Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Петя участвует в конкурсе, в котором разыгрывается \(n\) призов. Призы пронумерованы от 1 до \(n\).
По итогам конкурса участник может набрать от 2 до \(n\) баллов. Если участник наберет \(k\) баллов, то он получит один из призов с номером от 1 до \(k\). Перед тем, как участник выберет свой приз, ведущий конкурса удаляет один из призов из списка. Затем участник может выбрать любой приз из оставшихся \(k\) – 1.
Список призов стал известен Пете. Петя определил для каждого приза его ценность, для \(i\)-го приза она задается целым числом \(a_i\) .
Требуется написать программу, которая по заданным ценностям призов определяет для каждого \(k\) от 2 до \(n\), приз с какой максимальной ценностью гарантированно достанется Пете, если он наберет в конкурсе \(k\) баллов.
Первая строка входного файла содержит число \(n\) (\(2 \le n \le 100 000\)). Вторая строка этого файла содержит n целых чисел: \(a_1, a_2, …, a_n\) (\(1 \le a_i ≤ 10^9\) ).
Выходной файл должен содержать одну строку, содержащую \(n\) – 1 целых чисел: для каждого \(k\) от 2 до \(n\) должна быть выведена ценность приза, который достанется Пете, если он наберет \(k\) баллов.
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.
\(n \le 100\)
\(n \le 5000\)
\(n \le 100000\)
5 1 3 4 2 5
1 3 3 4
Для освоения Марса требуется построить исследовательскую базу. База должна состоять из \(n\) одинаковых модулей, каждый из которых представляет собой прямоугольник.
Каждый модуль представляет собой жилой отсек, который имеет форму прямоугольника размером \(a \times b\) метров. Для повышения надежности модулей инженеры могут добавить вокруг каждого модуля слой дополнительной защиты. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину дополнительной защиты. Модуль с защитой, толщина которой равна \(d\) метрам, будет иметь форму прямоугольника размером \((a + 2d) \times (b + 2d)\) метров.
Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером \(w \times h\) метров. При этом они должны быть организованы в виде регулярной сетки: их стороны должны быть параллельны сторонам поля, и модули должны быть ориентированы одинаково.
Требуется написать программу, которая по заданным количеству и размеру модулей, а также размеру поля для их размещения, определяет максимальную толщину слоя дополнительной защиты, который можно добавить к каждому модулю.
Строка содержит пять разделенных пробелами целых чисел: \(n\), \(a\), \(b\), \(w\) и \(h\) (\(1 \le n, a, b, w, h \le 10^{18}\)). Гарантируется, что без дополнительной защиты все модули можно разместить в поселении описанным образом.
Ответ должен содержать одно целое число: максимальную возможную толщину дополнительной защиты. Если дополнительную защиту установить не удастся, требуется вывести число 0.
В первом примере можно установить дополнительную защиту толщиной 2 метра и разместить модули на поле, как показано на рисунке.
\(1 \le n \le 1000, 1 \le a, b, w, h \le 1000\).
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены
\(1 \le n \le 1000, 1 \le a, b, w, h \le 10^9\).
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
\(1 \le n \le 10^9 , 1 \le a, b, w, h \le 10^{18}\).
В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
\(1 \le n \le 10^{18} , 1 \le a, b, w, h \le 10^{18}\).
В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
11 2 3 21 25
2
1 5 5 6 6
0
Рассмотрим строку \(s\), состоящую из строчных букв латинского алфавита. Примером такой строки является, например, строка «abba».
Подстрокой строки \(s\) называется строка, составленная из одного или нескольких подряд идущих символов строки \(s\). Обозначим как \(W(s)\) множество, состоящее из всех возможных подстрок строки \(s\). При этом каждая подстрока входит в это множество не более одного раза, даже если она встречается в строке \(s\) несколько раз.
Например, \(W\)(«abba») = {«a», «b», «ab», «ba», «bb», «abb», «bba», «abba»}.
Подпоследовательностью строки \(s\) называется строка, которую можно получить из \(s\) удалением произвольного числа символов. Обозначим как \(Y\)(\(s\)) множество, состоящее из всех возможных подпоследовательностей строки \(s\). Аналогично \(W\)(\(s\)), каждая подпоследовательность строки \(s\) включается в \(Y\)(\(s\)) ровно один раз, даже если она может быть получена несколькими способами удаления символов из строки \(s\). Поскольку любая подстрока строки \(s\) является также ее подпоследовательностью, то множество \(Y\)(\(s\)) включает в себя \(W\)(\(s\)), но может содержать также и другие строки.
Например, \(Y\)(«abba») = \(W\)(«abba») ∪ {«aa», «aba»}. Знак ∪ обозначает объединение множеств.
Будем называть строку \(s\) странной, если для нее \(W\)(\(s\)) = \(Y\)(\(s\)). Так, строка «abba» не является странной, а, например, строка «abb» является, так как для нее \(W\)(«abb») = \(Y\)(«abb») = {«a», «b», «ab», «bb», «abb»}.
Будем называть странностью строки число ее различных странных подстрок. При вычислении странности подстрока считается один раз, даже если она встречается в строке \(s\) в качестве подстроки несколько раз. Так, для строки «abba» ее странность равна 7, любая ее подстрока, кроме всей строки, является странной.
Требуется написать программу, которая по заданной строке \(s\) определяет ее странность.
Входной файл содержит строку \(s\), состоящую из строчных букв латинского алфавита. Строка имеет длину от 1 до 200 000.
Выходной файл должен содержать одно целое число: странность заданной во входном файле строки.
В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.
Строка \(s\) состоит только из букв «a» и «b». Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 1000.
Длина строки \(s\) не превышает 200 000.
abba
7
Во владениях короля Флатландии находится прямая дорога длиной \(n\) километров, по одну сторону от которой расположен огромный лесной массив. Король Флатландии проникся идеями защиты природы и решил превратить свой лесной массив в заповедник. Но сыновья стали сопротивляться: ведь им хотелось получить эти земли в наследство.
У короля три сына: младший, средний и старший. Король решил, что в заповедник не войдут участки лесного массива, которые он оставит сыновьям в наследство. При составлении завещания король хочет, чтобы для участков выполнялись следующие условия:
Входной файл содержит одно целое число \(n\) (\(6 \le n \le 10^9\) ).
Выходной файл должен содержать три целых положительных числа, разделенных пробелами: \(a\), \(b\) и \(c\) – длины сторон участков, которые следует выделить младшему, среднему и старшему сыну, соответственно. Если оптимальных решений несколько, разрешается вывести любое.
В этой задаче четыре подзадачи. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.
\(n \le 50\)
\(n \le 2000\)
\(n \le 40000\)
\(n \le 10^9\)
6
1 2 3
Андрей работает судьей на чемпионате по гипершашкам. В каждой игре в гипершашки участвует три игрока. По ходу игры каждый из игроков набирает некоторое положительное целое число баллов. Если после окончания игры первый игрок набрал \(a\) баллов, второй — \(b\), а третий \(c\), то говорят, что игра закончилась со счетом \(a:b:c\).
Андрей знает, что правила игры гипершашек устроены таким образом, что в результате игры баллы любых двух игроков различаются не более чем в \(k\) раз.
После матча Андрей показывает его результат, размещая три карточки с очками игроков на специальном табло. Для этого у него есть набор из n карточек, на которых написаны числа \(x_1, x_2, …, x_n\). Чтобы выяснить, насколько он готов к чемпионату, Андрей хочет понять, сколько различных вариантов счета он сможет показать на табло, используя имеющиеся карточки.
Требуется написать программу, которая по числу \(k\) и значениям чисел на карточках, которые имеются у Андрея, определяет количество различных вариантов счета, которые Андрей может показать на табло.
Первая строка входного файла содержит два целых числа: \(n\) и \(k (3 \le n \le 100 000, 1 \le k \le 10^9\) ).
Вторая строка входного файла содержит \(n\) целых чисел \(x_1, x_2, …, x_n (1 \le x_i \le 10^9 )\).
Выходной файл должен содержать одно целое число — искомое количество различных вариантов счета.
В приведенном примере Андрей сможет показать следующие варианты счета: 1:1:2, 1:2:1, 2:1:1, 1:2:2, 2:1:2, 2:2:1, 2:2:3, 2:3:2, 3:2:2. Другие тройки чисел, которые можно составить с использованием имеющихся карточек, не удовлетворяют заданному условию, что баллы любых двух игроков различаются не более чем в \(k\) = 2 раза.
В этой задаче четыре подзадачи. Баллы за подзадачу начисляются только в случае, если все тесты для данной подзадачи пройдены.
\(3 \le n \le 100 000, k = 1, 1 \le x_i \le 100 000\)
\(3 \le n \le 100, k \le 100, 1 \le x_i \le 100\)
\(3 \le n \le 100 000, k \le 10^9 \le x_i \le 10^9\), все \(x_i\) различны
\(3 \le n \le 100 000, k \le 10^9 \le x_i \le 10^9\)
5 2 1 1 2 2 3
9