Двоичное дерево поиска(24 задач)
Дерево отрезков, RSQ, RMQ(90 задач)
Бор(14 задач)
Дерево Фенвика(6 задач)
Декартово дерево(10 задач)
Известно, что в солнечной системе есть 8 планет и один планетоид. Мало кто знает, что ещё есть секретная планета, населенная медведями. Именно туда ассоциация Savez отправляет бравого генерала Хенрика для изучения медведей. Выяснилось, что медведи умеют телепортироваться. Расчётливый генерал Хедрик решил завербовать их в свою армию.
У одного медведя есть N строк (обозначим i -ю из них x i ). Исследования показывают, что количество раз, которое может телепортироваться медведь равно длине наибольшей подпоследовательности этих строк, удовлетворяющей такому правилу: строки x i и x j ( i < j ) могут принадлежать одной такой последовательности, если x i является и префиксом, и суффиксом x j .
Помогите уставшему от долгого полёта генералу Хендрику определить, сколько телепортаций сможет сделать данный медведь.
В первой строке содержится одно целое число N – количество строк, которые есть у медведя. В последующих N строках содержатся сами эти строки. Входной файл содержит не более двух миллионов символов.
Выведите одно число – ответ на вопрос любопытного генерала Хендрика.
В первом примере наибольшая последовательность A -> AA -> AAA В третьем примере наибольшая последовательность A -> A -> A или B -> B -> B
5 A B AA BBB AAA
3
5 A ABA BBB ABABA AAAAAB
3
6 A B A B A B
3
Юный Мирко решил купить куклу вуду. Учитывая что он крайне заинтересован в том, ктобы купить ее как можно дешевле, он начал отслеживать цены на кукол вуду каждый день. Его список состоит из цен на куклы в последние N дней, где a i обозначает цену куклы i дней назад.
Мирко думает, что нашел связь между средней ценой кукол в течении нескольких последовательных дней и ценой куклы в следующий день. Он хочет проверить свою догадку и задался вопросом: "Для данного числа P , сколько существует наборов последовательных дней в течении последних N дней, для которых средняя цена куклы в эти дни составляет не менее P ".
Два набора последовательных дней считаются различными, если у них отличается первый или последний день.
Первая строка содержит одно целое число N ( 1 ≤ N ≤ \(10^6\) ), количество дней в списке Мирко. Вторая строка содержит N целых чисел a i ( 0 ≤ a i ≤\(10^9\) ) - цены кукол в соответствующие дни. Третья строка содержит одно целое число P ( 0 ≤ P ≤\(10^9\) ).
Выведите одно целое число - ответ на вопрос Мирко для данного P .
3 1 2 3 3
1
3 1 3 2 2
5
3 1 3 2 3
1