Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Бумажная полоска разделена на N клеток. Двое играющих по очереди выбирают и зачёркивают ровно K пустых смежных клеток. Выигрывает сделавший последний ход. Оба игрока придерживаются правильной стратегии. Дана ситуация игры. Требуется определить, кто выиграет.
Ограничения:1 <= K <= N <= 40.
В первой строке содержатся числа N и K, во второй строке N символов: латинская заглавная O - пустая клетка, латинская заглавная X - зачёркнутая клетка.
Вывести одно число: 1, если выиграет первый, сделавший ход; 2, если выиграет второй; 0, если ход сделать нельзя.
1 1 O
1
2 1 OO
2
3 1 OOO
1
38 1 OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
2
Многоугольник на плоскости задан целочисленными координатами своих N вершин в декартовой системе координат. Требуется найти количество точек с целочисленными координатами, лежащих на границе многоугольника. Стороны многоугольника друг с другом не соприкасаются (за исключением соседних - в вершинах) и не пересекаются.
Ограничения: 3 <= N <= 100 000, координаты вершин целые и по модулю не превосходят 1 000 000 000.
В первой строке содержится число N, в следующих N строках - пары чисел - координаты точек. Если соединить точки в данном порядке, а также соединить первую и последнюю точки, получится заданный многоугольник.
Вывести одно число - количество точек с целочисленными координатами на границе многоугольника.
8 5 15 15 5 15 -5 5 -15 -5 -15 -15 -5 -15 5 -5 15
80
Пещера представлена кубом, разбитым на N частей по каждому измерению (то есть на N 3 кубических клеток). Каждая клетка может быть или пустой, или полностью заполненной камнем. Исходя из положения спелеолога в пещере, требуется найти, какое минимальное количество перемещений по клеткам ему требуется, чтобы выбраться на поверхность. Переходить из клетки в клетку можно, только если они обе свободны и имеют общую грань.
Ограничения: 1 <= N <= 30.
В первой строке содержится число N. Далее следует N блоков. Блок состоит из пустой строки и N строк по N символов: # - обозначает клетку, заполненную камнями, точка - свободную клетку. Начальное положение спелеолога обозначено заглавной буквой S. Первый блок представляет верхний уровень пещеры, достижение любой свободной его клетки означает выход на поверхность. Выход на поверхность всегда возможен.
Вывести одно число - длину пути до поверхности.
Примеры
Ввод 1 3 ### ### .## .#. .#S .#. ### ... ### Вывод 1 6 Комментарий 1 Нужно спуститься на уровень вниз, сделать два движения на запад, подняться на уровень вверх, сделать движение на юг, подняться на уровень вверх.
Дано N отрезков провода длиной L1, L2, ..., LN сантиметров. Требуется с помощью разрезания получить из них K равных отрезков как можно большей длины, выражающейся целым числом сантиметров. Если нельзя получить K отрезков длиной даже 1 см, вывести 0.
Ограничения: 1 <= N <= 10 000, 1 <= K <= 10 000, 100 <= Li <= 10 000 000, все числа целые.
В первой строке находятся числа N и К. В следующих N строках - L1, L2, ..., LN, по одному числу в строке.
Вывести одно число - полученную длину отрезков.
4 11 802 743 457 539
200
Обеденный перерыв Гомера Симпсона составляет \(T\) миллисекунд. Один гамбургер Гомер съедает за \(N\) миллисекунд, один чизбургер - за \(M\). Какое количество гамбургеров и чизбургеров нужно съесть, чтобы потраченное время было как можно больше, не превышая \(T\). При равенстве потраченного времени необходимо максимизировать суммарное количество съеденных гамбургеров и чизбургеров.
Ограничения: \(1 \le M, N, T \le 1 000 000\), все числа целые.
В первой строке находятся три числа - \(M\), \(N\) и \(T\), разделённые пробелами.
Вывести максимальное суммарное число гамбургеров и чизбургеров. Если остаётся какое-то время, требуется указать его через пробел. Предпочтителен вариант, когда дополнительного времени остаётся как можно меньше.
1 2 1000
1000
2 1 1000
1000