Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
В тактике футбола одним из основных понятий является схема игры. Она определяет, сколько из десяти полевых игроков будут играть в защите, сколько — в полузащите и сколько — в нападении.
Например, схема игры 5-3-2 означает, что в команде пять защитников, три полузащитника и два нападающих. В соответствии с современными представлениями на схему игры накладываются следующие ограничения: должно быть не менее одного и не более пяти защитников, не менее одного и не более пяти полузащитников и не более трех нападающих. Отметим, что нападающих может в команде и не быть совсем. Будем рассматривать только такие схемы.
Будем считать, что футбольное поле имеет длину 120 метров и ширину 80 метров. Введем на нем прямоугольную декартову систему координат таким образом, как показано на рисунке. Ворота рассматриваемой нами команды находятся слева.
Будем также считать, что игрок в некоторый момент времени находится в линии полузащиты, если он находится на расстоянии не более 20 метров от центральной линии. Соответственно, игрок находится в линии защиты, если он находится не более чем в 40 метрах от «своей» лицевой линии, и в линии нападения, если находится не более чем в 40 метрах от «чужой» лицевой линии.
Например, в ситуации, изображенной на рисунке, в линии защиты находятся четыре игрока, в линии полузащиты — три, в линии нападения — также три.
В процессе игры некоторые игроки могут перемещаться из одной линии в другую. В этой задаче будем считать, что возможно перемещение из полузащиты в защиту (и обратно) и из полузащиты в нападение (и обратно). Таким образом, игрок, который в соответствии со схемой игры является защитником, не может оказаться в линии нападения, и наоборот — игрок, который в соответствии со схемой игры является нападающим, не может оказаться в линии защиты. Кроме этого, в соответствии с установкой тренера из каждой линии в каждую могло перейти не более двух игроков.
Ваша задача состоит в том, чтобы написать программу, которая по положениям игроков в некоторый момент времени найдет все возможные схемы игры, при которых в течение игры могло возникнуть такое расположение игроков.
Входной файл содержит десять строк, содержащих по два целых числа xi и yi каждая, — координаты каждого из игроков команды (0 ≤ xi ≤ 120, xi ≠ 40, xi ≠ 80, 0 ≤ yi ≤ 80).
В первой строке выходного файла выведите k — число схем игры, по которым может играть команда. В последующих k строках в произвольном порядке выведите описание каждой из этих схем. Следуйте формату данных, приведенному в примере.
97 0 13 18 2 6 119 11 42 21 72 80 75 78 106 45 22 67 28 47
9 2-5-3 3-5-2 3-4-3 4-5-1 4-4-2 4-3-3 5-4-1 5-3-2 5-2-3
Напишите функцию для нахождения наибольшего общего делителя двух чисел с помощью алгоритма Евклида и используйте ее в программе для нахождения НОД уже \(n\) чисел.
На вход программе сначала подается значение \(n\) (\(2 \le n \le 100\)). В следующей строке находятся \(n\) целых неотрицательных чисел, не превосходящих \(30\,000\).
Выведите НОД исходных чисел.
3 24 8 20
4
4 0 2 4 8
2
Напишите функцию, вычисляющую длину отрезка по координатам его концов. С помощью этой функции напишите программу, вычисляющую периметр треугольника по координатам трех его вершин.
На вход программе подается \(6\) целых чисел — координат \(x_1,\, y_1,\, x_2,\, y_2,\, x_3,\, y_3\) вершин треугольника. Все числа по модулю не превосходят \(30\,000\).
Выведите значение периметра этого треугольника с точностью до \(6\) знаков после десятичной точки.
0 0 1 0 0 1
3.4142135624
Словарь задан массивом отсортированных в лексикографическом порядке строк. Напишите программу эффективного поиска слова в словаре.
На вход программе сначала подается искомое слово, во второй строке — число n (1 <= n <= 100000) — количество слов в словаре. В следующих n строках расположены слова словаря, по одному слову в строке. Все слова состоят только из строчных латинских букв, слова упорядочены по алфавиту (расположены в лексикографическом порядке).
Длина слов не превосходит 20. Пустых слов нет.
Выведите YES или NO в зависимости от того, есть искомое слово в словаре или нет.
abba 4 a ab aba baba
NO
Головоломка “Ханойские башни” состоит из трех стержней, пронумерованных числами 1, 2, 3. На стержень 1 надета пирамидка из n дисков различного диаметра в порядке возрастания диаметра. Диски можно перекладывать с одного стержня на другой по одному, при этом диск нельзя класть на диск меньшего диаметра. Необходимо переложить всю пирамидку со стержня 1 на стержень 3 за минимальное число перекладываний.
Напишите программу, которая решает головоломку; для данного числа дисков n печатает последовательность перекладываний в формате a b c, где a — номер перекладываемого диска, b — номер стержня с которого снимается данный диск, c — номер стержня на который надевается данный диск.
Например, строка 1 2 3 означает перемещение диска номер 1 со стержня 2 на стержень 3. В одной строке печатается одна команда. Диски пронумерованы числами от 1 до n в порядке возрастания диаметров.
Вводится натуральное число n.
Программа должна вывести минимальный (по количеству произведенных операций) способ перекладывания пирамидки из данного числа дисков.
2
1 1 2 2 1 3 1 2 3