Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Андрей едет из пункта A в пункт B на автомобиле. Расстояние между этими пунктами равно \(N\) километров. Известно, что с полным баком автомобиль способен проехать k километров. Дана карта, на которой отмечены координаты бензоколонок, относительно пункта A. Определите минимальное число заправок, которые придется сделать Андрею чтобы успешно достичь пункта B. Известно, что при выезде из пункта A бак был полон.
В первой строке вводятся числа \(N\) и \(k\) (натуральные, не превосходят 1000). В следующей строке вводится количество бензоколонок \(S\), потом следует \(S\) натуральных чисел, не превосходящих \(N\) – расстояния от пункта A до каждой заправки. Заправки упорядочены по удаленности от пункта A.
Если при данных условиях пункта B достичь невозможно, то вывести число -1. Если решение существует, то вывести минимальное количество остановок на дозаправку, которое нужно чтобы достичь пункта B.
100 20 1 50
-1
100 50 1 50
1
100 100 3 10 20 80
0
В некотором королевстве есть \(N\) провинций. Король пожелал объединить все их под своей самодержавной властью. Естественно, чтобы никто не догадался об этих планах, он будет это делать поэтапно, а именно: раз в год он будет объединять какие-то две провинции в одну. Чтобы жителям обеих провинций не было обидно, новому территориальному образованию будет присвоено новое название, которое будет отличаться от обоих старых названий. Естественно, это потребует выпуска новых паспортов для жителей обеих провинций.
Очевидно, что если в первой провинции \(p_i\) жителей, а во второй – \(p_j\) жителей, то для них надо выпустить \(p_i + p_j\) новых паспортов.
На следующий год король объединяет еще какие-то две провинции. И так далее, до тех пор пока вся территория королевства не будет объединена в одну большую «провинцию». Определите, какое наименьшее количество новых паспортов придется выпустить, если король будет объединять провинции оптимально с этой точки зрения.
В первой строке вводится число \(N\) (натуральное, не превышает \(10^5\)) – количество провинций. Затем вводится \(N\) чисел – количество жителей каждой провинции (натуральное, не превосходит \(10^9\)). Гарантируется, что изначально в королевстве хотя бы две провинции.
Выведите единственное число – количество новых паспортов, которые придется выпустить.
2 2 6
8
3 6 2 4
18
Петя участвует в конкурсе, в котором разыгрывается \(n\) призов. Призы пронумерованы от 1 до \(n\).
По итогам конкурса участник может набрать от 2 до \(n\) баллов. Если участник наберет \(k\) баллов, то он получит один из призов с номером от 1 до \(k\). Перед тем, как участник выберет свой приз, ведущий конкурса удаляет один из призов из списка. Затем участник может выбрать любой приз из оставшихся \(k\) – 1.
Список призов стал известен Пете. Петя определил для каждого приза его ценность, для \(i\)-го приза она задается целым числом \(a_i\) .
Требуется написать программу, которая по заданным ценностям призов определяет для каждого \(k\) от 2 до \(n\), приз с какой максимальной ценностью гарантированно достанется Пете, если он наберет в конкурсе \(k\) баллов.
Первая строка входного файла содержит число \(n\) (\(2 \le n \le 100 000\)). Вторая строка этого файла содержит n целых чисел: \(a_1, a_2, …, a_n\) (\(1 \le a_i ≤ 10^9\) ).
Выходной файл должен содержать одну строку, содержащую \(n\) – 1 целых чисел: для каждого \(k\) от 2 до \(n\) должна быть выведена ценность приза, который достанется Пете, если он наберет \(k\) баллов.
Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.
\(n \le 100\)
\(n \le 5000\)
\(n \le 100000\)
5 1 3 4 2 5
1 3 3 4
Для освоения Марса требуется построить исследовательскую базу. База должна состоять из \(n\) одинаковых модулей, каждый из которых представляет собой прямоугольник.
Каждый модуль представляет собой жилой отсек, который имеет форму прямоугольника размером \(a \times b\) метров. Для повышения надежности модулей инженеры могут добавить вокруг каждого модуля слой дополнительной защиты. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину дополнительной защиты. Модуль с защитой, толщина которой равна \(d\) метрам, будет иметь форму прямоугольника размером \((a + 2d) \times (b + 2d)\) метров.
Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером \(w \times h\) метров. При этом они должны быть организованы в виде регулярной сетки: их стороны должны быть параллельны сторонам поля, и модули должны быть ориентированы одинаково.
Требуется написать программу, которая по заданным количеству и размеру модулей, а также размеру поля для их размещения, определяет максимальную толщину слоя дополнительной защиты, который можно добавить к каждому модулю.
Строка содержит пять разделенных пробелами целых чисел: \(n\), \(a\), \(b\), \(w\) и \(h\) (\(1 \le n, a, b, w, h \le 10^{18}\)). Гарантируется, что без дополнительной защиты все модули можно разместить в поселении описанным образом.
Ответ должен содержать одно целое число: максимальную возможную толщину дополнительной защиты. Если дополнительную защиту установить не удастся, требуется вывести число 0.
В первом примере можно установить дополнительную защиту толщиной 2 метра и разместить модули на поле, как показано на рисунке.
\(1 \le n \le 1000, 1 \le a, b, w, h \le 1000\).
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены
\(1 \le n \le 1000, 1 \le a, b, w, h \le 10^9\).
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
\(1 \le n \le 10^9 , 1 \le a, b, w, h \le 10^{18}\).
В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
\(1 \le n \le 10^{18} , 1 \le a, b, w, h \le 10^{18}\).
В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.
11 2 3 21 25
2
1 5 5 6 6
0
Рассмотрим строку \(s\), состоящую из строчных букв латинского алфавита. Примером такой строки является, например, строка «abba».
Подстрокой строки \(s\) называется строка, составленная из одного или нескольких подряд идущих символов строки \(s\). Обозначим как \(W(s)\) множество, состоящее из всех возможных подстрок строки \(s\). При этом каждая подстрока входит в это множество не более одного раза, даже если она встречается в строке \(s\) несколько раз.
Например, \(W\)(«abba») = {«a», «b», «ab», «ba», «bb», «abb», «bba», «abba»}.
Подпоследовательностью строки \(s\) называется строка, которую можно получить из \(s\) удалением произвольного числа символов. Обозначим как \(Y\)(\(s\)) множество, состоящее из всех возможных подпоследовательностей строки \(s\). Аналогично \(W\)(\(s\)), каждая подпоследовательность строки \(s\) включается в \(Y\)(\(s\)) ровно один раз, даже если она может быть получена несколькими способами удаления символов из строки \(s\). Поскольку любая подстрока строки \(s\) является также ее подпоследовательностью, то множество \(Y\)(\(s\)) включает в себя \(W\)(\(s\)), но может содержать также и другие строки.
Например, \(Y\)(«abba») = \(W\)(«abba») ∪ {«aa», «aba»}. Знак ∪ обозначает объединение множеств.
Будем называть строку \(s\) странной, если для нее \(W\)(\(s\)) = \(Y\)(\(s\)). Так, строка «abba» не является странной, а, например, строка «abb» является, так как для нее \(W\)(«abb») = \(Y\)(«abb») = {«a», «b», «ab», «bb», «abb»}.
Будем называть странностью строки число ее различных странных подстрок. При вычислении странности подстрока считается один раз, даже если она встречается в строке \(s\) в качестве подстроки несколько раз. Так, для строки «abba» ее странность равна 7, любая ее подстрока, кроме всей строки, является странной.
Требуется написать программу, которая по заданной строке \(s\) определяет ее странность.
Входной файл содержит строку \(s\), состоящую из строчных букв латинского алфавита. Строка имеет длину от 1 до 200 000.
Выходной файл должен содержать одно целое число: странность заданной во входном файле строки.
В этой задаче четыре подзадачи. Баллы за каждую подзадачу начисляются только в случае, если все тесты для данной подзадачи успешно пройдены.
Строка \(s\) состоит только из букв «a» и «b». Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 50.
Длина строки \(s\) не превышает 1000.
Длина строки \(s\) не превышает 200 000.
abba
7