Темы --> Информатика --> Алгоритмы --> Алгоритмы поиска
    Линейный поиск(29 задач)
    Бинарный поиск(101 задач)
    Порядковые статистики(3 задач)
    Поиск подстроки в строке(1 задач)
    Тернарный поиск(8 задач)
    "Два указателя"(18 задач)
---> 155 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 8 9 10 11 12 13 14 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

К предстоящей олимпиаде в Сочи требуется возвести N олимпийских объектов. Процесс строительства каждого объекта определяется освоением выделяемых на него денежных средств.

В строительстве объектов готовы участвовать K фирм. Фирмы имеют разные строительные мощности, выраженные в количестве денежных средств, которые фирма может осваивать в единицу времени.

В каждый момент времени фирма может осуществлять работы только на одном объекте. В строительстве одного объекта не могут одновременно участвовать несколько фирм. В любой момент времени любой объект может быть передан для продолжения строительства любой фирме.

Администрация строительства олимпийских объектов заинтересована в скорейшем освоении денежных средств, поэтому хочет составить такой график работ, при следовании которому строительство будет завершено в кратчайшие сроки. В графике будет указано время, в течение которого тот или иной объект будет строиться какой-то фирмой.

Напишите программу, результаты работы которой позволят администрации построить требуемый график.

Входные данные

Первая строка содержит целое число N — количество объектов (1   50). Во второй строке содержатся разделенные пробелами целочисленные значения S1S2, S3, …, SN объемов денежных средств, выделяемых для строительства каждого из объектов. Числа Si выражены в тысячах рублей, положительные и не превышают 1000.

В третьей строке находится целое число K — количество строительных фирм (1   50). Четвертая строка содержит разделенные пробелами целочисленные значения мощностей каждой из фирм V1, V2, V3, …, VK в тыс.руб/час. Числа Vj положительные и не превышают 1000.

Выходные данные

Первая строка содержит действительное число T — время в часах окончания всех работ, считая с начала строительства, выведенное не менее чем с тремя точными знаками после запятой. Далее в каждой строке содержатся разделенные пробелами три числа: t, i, j, где действительное число t — время от начала строительства в часах, в которое j-я фирма приступает к строительным работам на i-м объекте.

Значения времен необходимо выводить с максимально возможной точностью.

Строки должны быть отсортированы по неубыванию t.

Примеры
Входные данные
2
24 20
2
3 2
Выходные данные
8.800
0 1 1
0 2 2
6.4000000 1 2
6.4000000 2 1
Входные данные
3
100 100 100
4
5 5 10 10
Выходные данные
12.00000
0 1 3
0 2 4
0 3 1
4 2 2
4 3 4
8 1 1
8 3 4
8 2 3
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Около прямолинейного забора, состоящего из N одинаковых бетонных плит, проводится конкурс граффити, в котором участвуют M граффити-художников. Художники должны разрисовать все плиты своими произведениями за наименьшее возможное время.

Плиты пронумерованы числами от 1 до N, граффити-художники имеют номера от 1 до M. Первоначально i-й граффити-художник находится около плиты с заданным номером pi. Каждому художнику требуется b минут на разрисовывание любой плиты. Каждую плиту должен разрисовать ровно один граффити-художник.

В начале работы, а также после разрисовывания любой плиты граффити-художник может перейти к любой неразрисованной плите. Время перемещения граффити-художника от любой плиты к соседней с ней одинаково и равно a минут. Таким образом, чтобы перейти от плиты с номером i к плите с номером j художнику требуется a×|ij| минут.

Требуется написать программу, которая поможет участникам конкурса разрисовать все плиты за минимальное возможное время.

Входные данные

В первой строке входного файла указаны числа N — количество плит в заборе и M — количество граффити-художников (1 ≤ N, M ≤ 100000). Во второй строке заданы два целых числа: a — количество минут, которое требуется для перехода от любой плиты к соседней, и b — количество минут, которое требуется граффити-художнику на разрисовывание одной плиты (1 ≤ a, b ≤ 106). В третьей строке заданы M чисел p1, p2, …, pM — начальные положения граффити-художников (1 ≤ piN).

Выходные данные

В первую строку выходного файла выведите минимальное количество минут, требуемых художникам для выполнения работы.

В последующих M строках выведите описание действий художников. В i-й из этих строк должно содержаться описание действий i-го художника: количество плит, которые должен разрисовать этот художник, и номера этих плит в очередности их разрисовывания. Если оптимальных решений несколько, можно вывести любое из них.

Примечание

Решения, корректно работающие при  2, будут оцениваться из 40 баллов.

Примеры
Входные данные
10 2
19 56
9 2
Выходные данные
375
5 10 9 8 7 6 
5 1 2 3 4 5 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Помимо открыток Петя и Вася решили устроить одноклассницам чаепитие и заразили своей идеей еще K–2 своих друзей. Они собрались вместе и выбрали в одном довольно известном супермаркете P тортиков. Настал черед рассчитываться за них.

В магазине есть N работающих касс, занумерованных числами от 1 до N. Про i-ю кассу известно, что кассиру требуется Ai единиц времени на обработку одного товара и Bi единиц времени для того, чтобы рассчитаться с покупателем. Обойдя все кассы, школьники посчитали, что на обслуживание покупателей, уже стоящих в i-ю кассу, уйдет Ti единиц времени.

Теперь Петя и Вася задались вопросом, в какие кассы надо встать им и их друзьям (в каждую из выбранных касс должен стоять хотя бы один из них, и каждый из них может стоять не более, чем в одну кассу, поэтому суммарно они могут стоять не более чем в K касс) и сколько тортиков каждый должен взять, чтобы последний из них вышел из магазина как можно раньше. Некоторые из ребят могут в кассу не стоять, а, отдав все тортики другим, выйти через специальный выход для тех, кто ничего не купил.

Напишите программу, которая определит это минимальное время.

Входные данные

В первой строке записано одно число N — количество касс в супермаркете (1 ≤ N ≤ 100000). В следующих N строках записано по три числа Ai, Bi, Ti (0 ≤ Ai, Bi, Ti ≤ 100000). В последней строке записаны два числа — K и P — число школьников и покупок у них соответственно (0 ≤ P ≤ 100000, 2 ≤ K ≤ 100000).

Все числа во входном файле целые.

Выходные данные

Выведите минимальное время выхода последнего школьника из магазина.

Комментарии к примерам тестов

Здесь лучше всего встать в обе кассы и купить там по одному тортику.

Выгоднее всего одному из школьников встать со всеми тортиками в первую кассу, а остальным выйти без покупок.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 10 и оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N K ≤ 100000 и оценивается в 30 баллов.

Третья группа состоит из тестов без дополнительного ограничения и оценивается в 40 баллов.

Примеры
Входные данные
2
100 10 40
10 100 50
2 2
Выходные данные
160
Входные данные
3 
1 2 0
5 2 1
2 10 1
3 5
Выходные данные
7
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В связи с визитом Императора Палпатина было решено обновить состав дроидов в ангаре 32. Из-за кризиса было решено новых дроидов не закупать, но выкинуть пару старых. Как известно, Палпатин не переносит дроидов с маленькими серийными номерами, так что все, что требуется - найти среди них двух, у которых серийные номера наименьшие.

Входные данные

Первая строка входного файла содержит целое число N – количество дроидов. (2 ≤ N ≤ 1000), вторая строка – N целых чисел, по модулю не превышающих 2*109 – номера дроидов

 

Выходные данные

Выведите два числа: первым – последний по величине из номеров дроидов (такого следует утилизировать в первую очередь), а вторым – предпоследний.

Примеры
Входные данные
5
10 2 3 1 5
Выходные данные
1 2
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
64 megabytes

Задана матрица K, содержащая n строк и m столбцов. Седловой точкой этой матрицы назовем элемент, который одновременно является минимумом в своей строке и максимумом в своем столбце.

Найдите количество седловых точек заданной матрицы.

Входные данные

Первая строка содержит целые числа n и m (1 ≤ n, m ≤ 750). Далее следуют n строк по m чисел в каждой. j-ое число i-ой строки равно kij. Все kij по модулю не превосходят 1000.

Выходные данные

Выведите ответ на задачу.

Примеры
Входные данные
2 2
0 0
0 0
Выходные данные
4
Входные данные
2 2
1 2
3 4
Выходные данные
1

Страница: << 8 9 10 11 12 13 14 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест