---> 101 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 9 10 11 12 13 14 15 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Высокое здание, состоящее из \(N\) этажей, оснащено только одним лифтом. Парковка находится ниже фундамента здания, что соответствует одному этажу ниже первого. Этажи пронумерованы от \(1\) до \(N\) снизу вверх. Про каждый этаж известно количество человек, желающих спуститься на лифте на парковку. Пусть для i-го этажа эта величина равна \(A_i\). Известно, что лифт не может перевозить более \(C\) человек единовременно, а также то, что на преодоление расстояния в один этаж (не важно вверх или вниз) ему требуется \(P\) секунд. Какое наибольшее количество человек лифт может перевезти на парковку за \(T\) секунд, если изначально он находится на уровне парковки?

Входные данные

В первой строке входного файла содержатся целые числа \(N\), \(C\), \(P\), \(T\) (\(1 \leq N \leq 100\), \(1 \leq C \leq 10^9\), \(1 \leq P \leq 10^9\), \(1 \leq T \leq 10^9\)). Вторая строка содержит последовательность \(N\)  целых чисел \(A_1\), \(A_2\), ..., \(A_N\) (\(0 \leq A_i \leq 10^9\)). Сумма всех значений последовательности не превосходит \(10^9\).

Выходные данные

Выведите наибольшее количество человек, которое лифт успеет перевезти на парковку.

Примеры
Входные данные
4 5 2 15
0 1 2 3
Выходные данные
3
Входные данные
4 5 2 18
0 1 2 3
Выходные данные
5
Входные данные
3 2 1 9
1 1 1
Выходные данные
3

В селе Максоярославке коровы обычно пасутся на лужайках, соединенных дорожками, на каждой лужайке пасется хотя бы одна корова. При этом для каждой пары лужаек есть ровно один способ пройти от одной лужайки до другой. По каждой дорожке можно двигаться в обоих направлениях. Считается, что все дорожки имеют одинаковую длину.
Главный фермер села хочет построить на лужайках \(k\) коровников для своих коров. Ясно, что каждая корова вечером будет возвращаться именно в тот коровник, который ближе к ее лужайке (если расстояние до коровников одинаково, то в любой из них). Поэтому возникает задача определения такого расположения коровников, при котором наибольшее из расстояний, проходимых коровами, было бы минимально.

Входные данные

В первой строке входного файла содержатся два числа \(n\) и \(k\) (\(2 \le n \le 50\;000\), \(1 \le k \le n\)) --- количество лужаек и планируемое число коровников, соответственно. Следующие \(n - 1\) строк содержат описания дорожек. Каждая дорожка задается парой целых положительных чисел (\(a, \, b\)), где \(a\) и \(b\) --- номера лужаек, которые соединяет данная дорожка. Лужайки нумеруются с единицы.

Выходные данные

В первой строке входного файла выведите \(l\) --- максимальное количество дорожек, по которым придется пройти корове, чтобы попасть в коровник. Во второй строке выведите \(k\) различных целых чисел --- номера лужаек, на которых следует построить коровники. Если оптимальных решений несколько, разрешается вывести любое из них.

Примеры
Входные данные
7 2
5 4
4 3
1 3
2 3
4 6
6 7
Выходные данные
2
1 4 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Велосипедисты, участвующие в шоссейной гонке, в некоторый момент времени, который называется начальным, оказались в точках, удалённых от места старта на \(x_1\), \(x_2\), ..., \(x_n\) метров (\(n\) – общее количество велосипедистов). Каждый велосипедист двигается со своей постоянной скоростью \(v_1\), \(v_2\), ..., \(v_n\) метров в секунду. Все велосипедисты двигаются в одну и ту же сторону.

Репортёр, освещающий ход соревнований, хочет определить момент времени, в который расстояние между лидирующим в гонке велосипедистом и замыкающим гонку велосипедистом станет минимальным, чтобы с вертолёта сфотографировать сразу всех участников велогонки.

Требуется написать программу, которая по заданному количеству велосипедистов \(n\), заданным начальным положениям велосипедистов \(x_1\), \(x_2\), ..., \(x_n\) и их скоростям \(v_1\), \(v_2\), ..., \(v_n\), вычислит момент времени \(t\), в который расстояние \(l\) между лидирующим и замыкающим велосипедистом будет минимальным.

Входные данные

Первая строка входного файла содержит целое число \(n\) – количество велосипедистов.

В последующих n строках указаны по два целых числа: \(x_i\) – расстояние от старта до \(i\)-го велосипедиста в начальный момент времени (\(0 \leq x_i \leq 10^7\)) и \(v_i\) – его скорость (\(0 \leq v_i \leq 10^7\)).

Выходные данные

В выходной файл необходимо вывести два вещественных числа: \(t\) – время в секундах, прошедшее от начального момента времени до момента, когда расстояние в метрах между лидером и замыкающим будет минимальным, \(l\) – искомое расстояние.

Числа t и l должны иметь абсолютную или относительную погрешность не более \(10^{–6}\), что означает следующее. Пусть выведенное число равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет считаться правильным, если значение выражения \(|x – y| / max(1, |y|)\) не превышает \(10^{–6}\).

Подзадачи и система оценки

Данная задача содержит четыре подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.

Подзадача 1 (20 баллов)

\(2 \leq n \leq 50\), \(0 \leq  x_i \leq 1000\), \(0 \leq v_i \leq 1000\). Гарантируется, что существует ответ, в котором \(t\) – целое число, не превышающее 1000.

Подзадача 2 (20 баллов)

\(2 \leq n \leq 200\).

Подзадача 3 (30 баллов)

\(2 \leq n \leq 2000\)

Подзадача 4 (30 баллов)

\(2 \leq n \leq 10^5\)

Примеры
Входные данные
3
0 40
30 10
40 30
Выходные данные
1 30
Входные данные
5
90 100
100 70
100 70
110 60
120 35
Выходные данные
0.5 5.000000000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Дано действительное число a и натуральное n. Вычислите корень n-й степени из числа a.

Для решения используйте метод деления отрезка пополам.

Входные данные

Число a – действительное, неотрицательное, не превосходит 1000, задано с точностью до 6 знаков после запятой. Число n – натуральное, не превосходящее 10.

Выходные данные

Программа должна вывести единственное число: ответ на задачу с точностью не менее 6 знаков после запятой.

Примеры
Входные данные
2
2

Выходные данные
1.41421356237

Страница: << 9 10 11 12 13 14 15 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест