Бинарный поиск по ответу(56 задач)
Бинарный поиск значения функции(5 задач)
Высокое здание, состоящее из \(N\) этажей, оснащено только одним лифтом. Парковка находится ниже фундамента здания, что соответствует одному этажу ниже первого. Этажи пронумерованы от \(1\) до \(N\) снизу вверх. Про каждый этаж известно количество человек, желающих спуститься на лифте на парковку. Пусть для i-го этажа эта величина равна \(A_i\). Известно, что лифт не может перевозить более \(C\) человек единовременно, а также то, что на преодоление расстояния в один этаж (не важно вверх или вниз) ему требуется \(P\) секунд. Какое наибольшее количество человек лифт может перевезти на парковку за \(T\) секунд, если изначально он находится на уровне парковки?
В первой строке входного файла содержатся целые числа \(N\), \(C\), \(P\), \(T\) (\(1 \leq N \leq 100\), \(1 \leq C \leq 10^9\), \(1 \leq P \leq 10^9\), \(1 \leq T \leq 10^9\)). Вторая строка содержит последовательность \(N\) целых чисел \(A_1\), \(A_2\), ..., \(A_N\) (\(0 \leq A_i \leq 10^9\)). Сумма всех значений последовательности не превосходит \(10^9\).
Выведите наибольшее количество человек, которое лифт успеет перевезти на парковку.
4 5 2 15 0 1 2 3
3
4 5 2 18 0 1 2 3
5
3 2 1 9 1 1 1
3
В селе Максоярославке коровы обычно пасутся на лужайках, соединенных дорожками, на каждой лужайке пасется хотя бы одна корова. При этом для каждой пары лужаек есть ровно один способ пройти от одной лужайки до другой. По каждой дорожке можно двигаться в обоих направлениях. Считается, что все дорожки имеют одинаковую длину.
Главный фермер села хочет построить на лужайках \(k\) коровников для своих коров. Ясно, что каждая корова вечером будет возвращаться именно в тот
коровник, который ближе к ее лужайке (если расстояние до коровников
одинаково, то в любой из них). Поэтому возникает задача определения
такого расположения коровников, при котором наибольшее из расстояний,
проходимых коровами, было бы минимально.
В первой строке входного файла содержатся два числа \(n\) и \(k\) (\(2 \le n \le 50\;000\), \(1 \le k \le n\)) --- количество лужаек и планируемое число коровников, соответственно. Следующие \(n - 1\) строк содержат описания дорожек. Каждая дорожка задается парой целых положительных чисел (\(a, \, b\)), где \(a\) и \(b\) --- номера лужаек, которые соединяет данная дорожка. Лужайки нумеруются с единицы.
В первой строке входного файла выведите \(l\) --- максимальное количество дорожек, по которым придется пройти корове, чтобы попасть в коровник. Во второй строке выведите \(k\) различных целых чисел --- номера лужаек, на которых следует построить коровники. Если оптимальных решений несколько, разрешается вывести любое из них.
7 2 5 4 4 3 1 3 2 3 4 6 6 7
2 1 4
Велосипедисты, участвующие в шоссейной гонке, в некоторый момент времени, который называется начальным, оказались в точках, удалённых от места старта на \(x_1\), \(x_2\), ..., \(x_n\) метров (\(n\) – общее количество велосипедистов). Каждый велосипедист двигается со своей постоянной скоростью \(v_1\), \(v_2\), ..., \(v_n\) метров в секунду. Все велосипедисты двигаются в одну и ту же сторону.
Репортёр, освещающий ход соревнований, хочет определить момент времени, в который расстояние между лидирующим в гонке велосипедистом и замыкающим гонку велосипедистом станет минимальным, чтобы с вертолёта сфотографировать сразу всех участников велогонки.
Требуется написать программу, которая по заданному количеству велосипедистов \(n\), заданным начальным положениям велосипедистов \(x_1\), \(x_2\), ..., \(x_n\) и их скоростям \(v_1\), \(v_2\), ..., \(v_n\), вычислит момент времени \(t\), в который расстояние \(l\) между лидирующим и замыкающим велосипедистом будет минимальным.
Первая строка входного файла содержит целое число \(n\) – количество велосипедистов.
В последующих n строках указаны по два целых числа: \(x_i\) – расстояние от старта до \(i\)-го велосипедиста в начальный момент времени (\(0 \leq x_i \leq 10^7\)) и \(v_i\) – его скорость (\(0 \leq v_i \leq 10^7\)).
В выходной файл необходимо вывести два вещественных числа: \(t\) – время в секундах, прошедшее от начального момента времени до момента, когда расстояние в метрах между лидером и замыкающим будет минимальным, \(l\) – искомое расстояние.
Числа t и l должны иметь абсолютную или относительную погрешность не более \(10^{–6}\), что означает следующее. Пусть выведенное число равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет считаться правильным, если значение выражения \(|x – y| / max(1, |y|)\) не превышает \(10^{–6}\).
Данная задача содержит четыре подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
\(2 \leq n \leq 50\), \(0 \leq x_i \leq 1000\), \(0 \leq v_i \leq 1000\). Гарантируется, что существует ответ, в котором \(t\) – целое число, не превышающее 1000.
\(2 \leq n \leq 200\).
\(2 \leq n \leq 2000\)
\(2 \leq n \leq 10^5\)
3 0 40 30 10 40 30
1 30
5 90 100 100 70 100 70 110 60 120 35
0.5 5.000000000000
Дано действительное число a и натуральное n. Вычислите корень n-й степени из числа a.
Для решения используйте метод деления отрезка пополам.
Число a – действительное, неотрицательное, не превосходит 1000, задано с точностью до 6 знаков после запятой. Число n – натуральное, не превосходящее 10.
Программа должна вывести единственное число: ответ на задачу с точностью не менее 6 знаков после запятой.
2 2
1.41421356237