Дима недавно поступил на работу в НИИ Плоских Кривых. Как следует из названия этого научно- исследовательского института, он занимается различными исследованиями в области плоских кривых. Недавно Димин начальник Георгий столкнулся с весьма интересной кривой, которая, как выяснилось после некоторого исследования, известна под названием Архимедовой спирали. Архимедова спираль плоская кривая, изображающая траекторию точки M, которая равномерно движется вдоль луча OK с началом в O, в то время как сам луч OK равномерно вращается вокруг точки O (см. рисунок). Другими словами, расстояние до начала координат ρ = OM линейно зависит от угла поворота φ луча OK. При этом повороту луча OK на один и тот же угол соответствует одно и то же приращение расстояния ρ.
Движение точки M можно задать с помощью ряда параметров:
• начального угла поворота α луча OK (измеряется в градусах против часовой стрелки относительно положительного направления оси OX);
• угловой скорости вращения ω луча OK (измеряется в градусах за единицу времени);
• начального расстояния R от точки M до начала координат (точки O);
• скорости движения V точки M по лучу OK.
Если, задав эти параметры, не ограничить время движения точки M, то получится бесконечная кривая, исследовать которую достаточно трудно. Поэтому Дима решил ограничиться исследованием некоторой части этой кривой той, которая получается при движении точки M от нулевого момента времени до момента времени T. Задача, которую решает Дима состоит в поиске прямоугольника минимальной площади со сторонами, параллельными осям координат, в который ее можно вписать.
Требуется написать программу, которая найдет искомый прямоугольник
Входной файл содержит четыре целых числа: ω (1 ≤ ω ≤ 100), V (1 ≤ V ≤ 100), R (0 ≤ R ≤ 100) и T (1 ≤ T ≤ 1000). В этой задаче считается, что начальный угол поворота α равен нулю.
В первой строке выходного файла выведите два вещественных числа — координаты левого нижнего угла искомого прямоугольника, а во второй строке — координаты правого верхнего угла искомого прямоугольника.
Ответ будет считаться правильным, если значение каждой из координат будет отличаться от истинного значения не более чем на 10-5.
60 10 0 18
-150.3028434716 -165.2754877824 180.0000000000 135.3362037333
Паук и паучиха плывут по озеру на двух веточках. Плавать они не умеют, поэтому смогут встретиться только тогда, когда веточки соприкоснутся.
Считая, что веточки имеют форму отрезков, и что они плывут с постоянными скоростями, определите, сколько осталось ждать встречи несчастным членистоногим.
Входной файл содержит 12 чисел: \(x_1\), \(y_1\), \(x_2\), \(y_2\), \(x_3\), \(y_3\), \(x_4\), \(y_4\), \(v_{1x}\), \(v_{1y}\), \(v_{2x}\), \(v_{2y}\). Координаты вершин первого отрезка: (\(x_1\), \(y_1\)) и (\(x_2\), \(y_2\)), координаты вершин второго отрезка: (\(x_3\), \(y_3\)) и (\(x_4\), \(y_4\)), скорость первого отрезка (\(v_{1x}\), \(v_{1y}\)), скорость второго отрезка (\(v_{2x}\), \(v_{2y}\)). Все числа целые и не превосходят по модулю \(10^4\). В начальный момент времени веточки не соприкасаются. Гарантируется, что веточки имеют ненулевую длину.
Выведите в выходной файл время до ближайшего момента, когда веточки соприкоснутся, с ошибкой не более \(10^{-4}\). Если веточки не соприкоснутся никогда, выведите число -1.
0 0 -1 3 4 4 7 7 3 0 0 -1
1.6
0 0 -1 3 4 4 7 7 1 0 0 -3
-1
Министерство дорожного транспорта решило построить себе новый офис. Поскольку министр регулярно выезжает с инспекцией наиболее важных трасс, было решено, что офис министерства не должен располагаться слишком далеко от них.
Наиболее важные трассы представляют собой прямые на плоскости. Министерство хочет выбрать такое расположение для своего офиса, чтобы максимум из расстояний от офиса до трасс был как можно меньше.
Требуется написать программу, которая по заданному расположению наиболее важных трасс определяет оптимальное расположение дома для офиса министерства дорожного транспорта.
Первая строка входного файла содержит одно целое число \(n\) — количество наиболее важных трасс (\(1 \le n \le 10^4\)).
Последующие \(n\) строк описывают трассы. Каждая трасса описывается четырьмя целыми числами \(x_1\), \(y_1\), \(x_2\) и \(y_2\) и представляет собой прямую, проходящую через точки \((x_1, y_1)\) и \((x_2, y_2)\). Координаты заданных точек не превышают по модулю \(10^4\). Точки \((x_1, y_1)\) и \((x_2, y_2)\) ни для какой прямой не совпадают.
Выходной файл должен содержать два разделенных пробелом вещественных числа: координаты точки, в которой следует построить офис министерства дорожного транспорта. Координаты по модулю не должны превышать \(10^9\), гарантируется, что хотя бы один такой ответ существует. Если оптимальных ответов несколько, необходимо выведите любой из них.
Ответ должен иметь абсолютную или относительную погрешность не более \(10^{-6}\), что означает следующее. Пусть максимальное расстояние от выведенной точки до некоторой трассы равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет засчитан, если значение выражения \(|x - y| / max(1, |y|)\) не превышает \(10^{-6}\).
Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны, оцениваются из 20 баллов.
Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны осям координат, оцениваются из 20 баллов.
Правильные решения для тестов, в которых \(n \le 100\), оцениваются из 70 баллов (в эти баллы включаются также по 20 баллов за случаи, описанные в предыдущих двух абзацах).
4 0 0 0 1 0 0 1 0 1 1 2 1 1 1 1 2
0.5000000004656613 0.4999999995343387
7 376 -9811 376 -4207 6930 -3493 6930 -8337 1963 -251 1963 -5008 -1055 9990 -684 9990 3775 -348 3775 1336 7706 -2550 7706 -8412 -9589 8339 -4875 8339
4040.9996151750674 12003.999615175067
Велосипедисты, участвующие в шоссейной гонке, в некоторый момент времени, который называется начальным, оказались в точках, удалённых от места старта на \(x_1\), \(x_2\), ..., \(x_n\) метров (\(n\) – общее количество велосипедистов). Каждый велосипедист двигается со своей постоянной скоростью \(v_1\), \(v_2\), ..., \(v_n\) метров в секунду. Все велосипедисты двигаются в одну и ту же сторону.
Репортёр, освещающий ход соревнований, хочет определить момент времени, в который расстояние между лидирующим в гонке велосипедистом и замыкающим гонку велосипедистом станет минимальным, чтобы с вертолёта сфотографировать сразу всех участников велогонки.
Требуется написать программу, которая по заданному количеству велосипедистов \(n\), заданным начальным положениям велосипедистов \(x_1\), \(x_2\), ..., \(x_n\) и их скоростям \(v_1\), \(v_2\), ..., \(v_n\), вычислит момент времени \(t\), в который расстояние \(l\) между лидирующим и замыкающим велосипедистом будет минимальным.
Первая строка входного файла содержит целое число \(n\) – количество велосипедистов.
В последующих n строках указаны по два целых числа: \(x_i\) – расстояние от старта до \(i\)-го велосипедиста в начальный момент времени (\(0 \leq x_i \leq 10^7\)) и \(v_i\) – его скорость (\(0 \leq v_i \leq 10^7\)).
В выходной файл необходимо вывести два вещественных числа: \(t\) – время в секундах, прошедшее от начального момента времени до момента, когда расстояние в метрах между лидером и замыкающим будет минимальным, \(l\) – искомое расстояние.
Числа t и l должны иметь абсолютную или относительную погрешность не более \(10^{–6}\), что означает следующее. Пусть выведенное число равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет считаться правильным, если значение выражения \(|x – y| / max(1, |y|)\) не превышает \(10^{–6}\).
Данная задача содержит четыре подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
\(2 \leq n \leq 50\), \(0 \leq x_i \leq 1000\), \(0 \leq v_i \leq 1000\). Гарантируется, что существует ответ, в котором \(t\) – целое число, не превышающее 1000.
\(2 \leq n \leq 200\).
\(2 \leq n \leq 2000\)
\(2 \leq n \leq 10^5\)
3 0 40 30 10 40 30
1 30
5 90 100 100 70 100 70 110 60 120 35
0.5 5.000000000000
Чтобы помешать появлению СЭС в лагере, администрация ЛКШ перекопала единственную дорогу, соединяющую «Берендеевы поляны» с Судиславлем, теперь проехать по ней невозможно. Однако, трудности не остановили инспекцию, хотя для СЭС остается только одна возможность — дойти до лагеря пешком. Как известно, Судиславль находится в поле, а «Берендеевы поляны» — в лесу.
Администрация ЛКШ хочет узнать, сколько времени у нее осталось для подготовки к визиту СЭС. Она попросила вас выяснить, в какой точке инспекция СЭС должна войти в лес, чтобы дойти до «Берендеевых полян» как можно быстрее.
В первой строке входного файла содержатся два положительных целых числа \(V_p\) и \(V_f\) \((1 \le V_p, V_f \le 10^5)\). Во второй строке содержится единственное вещественное число — координата по оси \(Oy\) границы между лесом и полем \(a\) \((0 \le a \le 1)\).
В единственной строке выходного файла выведите вещественное число с точностью не менее 6 знаков после запятой — координата по оси \(Ox\) точки, в которой инспекция СЭС должна войти в лес.
5 3 0.4
0.783310604
5 5 0.5
0.500000000