Линейные структуры(59 задач)
Корневая эвристика (sqrt декомпозиция)(14 задач)
Разреженные таблицы (sparse table)(2 задач)
Система непересекающихся множеств(16 задач)
Хеш(35 задач)
Персистентные структуры данных(2 задач)
Пете поручили написать менеджер памяти для новой стандартной библиотеки языка H++. В распоряжении у менеджера находится массив из N последовательных ячеек памяти, пронумерованных от 1 до N. Задача менеджера — обрабатывать запросы приложений на выделение и освобождение памяти.
Запрос на выделение памяти имеет один параметр K. Такой запрос означает, что приложение просит выделить ему K последовательных ячеек памяти. Если в распоряжении менеджера есть хотя бы один свободный блок из K последовательных ячеек, то он обязан в ответ на запрос выделить такой блок. При этом непосредственно перед самой первой ячейкой памяти выделяемого блока не должно располагаться свободной ячейки памяти. После этого выделенные ячейки становятся занятыми и не могут быть использованы для выделения памяти, пока не будут освобождены. Если блока из K последовательных свободных ячеек нет, то запрос отклоняется.
Запрос на освобождение памяти имеет один параметр T. Такой запрос означает, что менеджер должен освободить память, выделенную ранее при обработке запроса с порядковым номером T. Запросы нумеруются, начиная с единицы. Гарантируется, что запрос с номером T — запрос на выделение, причем к нему еще не применялось освобождение памяти. Освобожденные ячейки могут снова быть использованы для выделения памяти. Если запрос с номером T был отклонен, то текущий запрос на освобождение памяти игнорируется.
Требуется написать менеджер памяти, удовлетворяющий приведенным критериям.
В первой строке входных данных задаются числа N и M — количество ячеек памяти и количество запросов, соответственно (1 ≤ N ≤ 231 – 1; 1 ≤ M ≤ 105). Каждая из следующих M строк содержит по одному числу: (i+1)-я строка входных данных (1 ≤ i ≤ M) содержит либо положительное число K, если i-й запрос — запрос на выделение с параметром K (1 ≤ K ≤ N), либо отрицательное число –T, если i-й запрос — запрос на освобождение с параметром T (1 ≤ T < i).
Для каждого запроса на выделение памяти выведите результат обработки этого запроса: для успешных запросов выведите номер первой ячейки памяти в выделенном блоке, для отклоненных запросов выведите число –1. Результаты нужно выводить в порядке следования запросов во входных данных
42 9 7 3 8 -2 6 5 -5 9 4
1 8 11 19 25 30 19
Профиль Уральских гор задается ломаной (x1, y1), (x2, y2), …, (xN, yN), для координат вершин которой верны неравенства x1 < x2 < … < xN. Начальные и конечные точки профиля расположены на уровне моря (y1 = yN = 0).
На горном профиле заданы две различные точки A и B, между которыми требуется проложить дорогу. Эта дорога будет проходить по склонам гор и проектируемому горизонтальному мосту, длина которого не должна превышать L. Оба конца моста находятся на горном профиле. Дорога заходит на мост с одного конца и выходит с другого. Мост не может содержать точек, расположенных строго под ломаной (строительство тоннелей не предполагается).
Возможные примеры расположения моста |
Невозможное расположение моста |
Достоверно известно, что строительство такого моста в данной местности возможно, причем позволит сократить длину дороги из точки A в точку B. Требуется написать программу, которая определит такое расположение горизонтального моста, что длина дороги от точки A до точки B будет наименьшей.
Первая строка входных данных содержит два целых числа N и L — количество вершин ломаной (2 ≤ N ≤ 100 000) и максимальную длину моста (1 ≤ L ≤ 106) соответственно. Вторая строка содержит координаты точки A, третья строка — координаты точки B. Точки A и B различны.
Последующие N строк содержат координаты вершин ломаной (x1, y1), (x2, y2), …, (xN, yN). Координаты вершин ломаной, а также точек A и B, задаются парой целых чисел, не превосходящих по абсолютному значению 106. Гарантируется, что x1 < x2 < … < xN и y1 = yN = 0, а также, что точки A и B принадлежат ломаной.
В первой и второй строках выходных данных выведите координаты концов моста с точностью не менее 5 знаков после десятичной точки. В случае, когда решений несколько, выведите любое из них.
В примере в первой строке указана длина дороги от точки A до точки B с учётом построенного моста. Её не нужно выводить.
Примечание
Решения, корректно работающие при N ≤ 2000, будут оцениваться, исходя из 80 баллов.
5 3 1 1 3 1 -1 0 0 2 2 0 4 2 5 0
2.000000000 1.00000 1.00000 3.00000 1.00000
Клавиатура сотового телефона выглядит так:
1 — пробел |
2 — abc |
3 — def |
4 — ghi |
5 — jkl |
6 — mno |
7 — pqrs |
8 — tuv |
9 — wxyz |
Режим ввода T2005 устроен следующим образом. В телефоне есть словарь. Пользователь, чтобы ввести слово, последовательно нажимает клавиши, на которых написаны буквы этого слова. Например, чтобы ввести слово begin пользователь должен нажимать клавиши 23446. Но как только в словаре оказывается только одно слово с таким началом, это слово автоматически подставляется и, кроме того, после этого слова автоматически добавляется пробел. Например, пусть пользователь нажал клавиши 234, и оказалось, что слов, ввод которых начинается с нажатия именно этих клавиш, — ровно одно. Тогда автоматически подставится это слово и пробел после него, а все последующие нажатия клавиш уже будут относиться к вводу следующего слова.
Если для ввода какого-то слова нужно нажать последовательность клавиш, которая может являться началом какого-то другого слова, то после ввода этого слова нужно нажать клавишу 1, что соответствует вводу пробела. При вводе пробела считается, что вы ввели все слово целиком (а не только какое-либо его начало). Если после ввода пробела оказалось, что в словаре такой последовательности клавиш удовлетворяет несколько слов, подставляется первое из них в алфавитном порядке. Если (опять же после ввода пробела) оказалось, что в словаре нет слова, которое может быть введено такой последовательностью клавиш, то все, что было введено после предыдущего пробела (введенного или автоматически подставленного, или, если в тексте ранее не встречалось ни одного пробела — от начала текста) удаляется. Если после ввода пробела (как нажатием "1", так и автоподстановкой) или в начале текста нажимается клавиша "1", то ее нажатие игнорируется.
Вам дан словарь и последовательность нажатий клавиш. Выведите текст, который был введен пользователем.
Примечание: в тексте используются только маленькие латинские буквы и символ пробел.
Сначала на вход программы поступает число N — количество слов в словаре (2≤N≤100000). В следующих N строках задается словарь. Каждое слово записано в отдельной строке. Слова расположены в алфавитном порядке. Никакое слово в словаре не встречается дважды. Длина каждого слова не превосходит 10 символов.
Далее вводится число M — количество нажатий клавиш (1≤M≤20000). Затем задается M разделяющихся пробелами чисел, описывающих нажатые клавиши. Последней нажатой клавишей всегда является клавиша "1".
Выведите одну строку — текст, который оказался введен пользователем. Пробел после последнего введенного слова также должен быть выведен.
Примечание:
2 |
Примечание: в этом примере выходной файл должен быть создан, но должен быть пустым, в частности, в него не нужно выводить пробел. |
Оценка задачи
1 балл получат программы, правильно решающие задачу при ограничениях 2≤N≤100, 1≤M≤200.
5 po pod sasha shla shosse 12 7 4 5 7 2 7 6 1 7 4 6 1
shla sasha po shosse
2 sem vosem 6 7 8 9 7 8 1
sem vosem
+ |
||||
+ |
(4,3) |
+ |
||
+ |
Дано клетчатое поле N x M, все клетки поля изначально белые. Автомат умеет:
Дана последовательность команд для автомата. Требуется выполнить эти команды в указанной последовательности, и для каждой команды запроса ближайших белых соседей указать результат ее выполнения.
Сначала вводятся размеры поля N и M (1 ≤ N ≤ 20, 1 ≤ M ≤ 50000), затем количество команд K (1 ≤ K ≤ 105), а затем сами команды. Команды записаны по одной в строке в следующем формате:
Colori j — окраска клетки (i,j) в черный цвет;
Neighbors i j — нахождение белых соседей для БЕЛОЙ клетки (i,j).
1 ≤ i ≤ N, 1 ≤ j ≤ M.
На каждый запрос Neighbors требуется вывести сначала количество ближайших белых соседей (или 0, если ни с одной из сторон белых клеток не осталось), а затем их координаты (соседей можно перечислять в произвольном порядке). Если запросов Neighbors нет, ничего выводить не надо. Пример ниже некорректен, первое число "3" должно отсутствовать.
Оценка задачи
1 балл получат решения, верно работающие при N ≤ 20, M ≤ 500, K ≤ 1000.
5 5 6 Color 4 2 Neighbors 4 3 Color 2 3 Color 3 3 Neighbors 4 3 Neighbors 5 1
3 4 4 1 4 4 3 3 5 3 4 4 1 4 4 1 3 5 3 2 5 2 4 1
На складе хранятся контейнеры с товарами N различных видов. Все контейнеры составлены в N стопок. В каждой стопке могут находиться контейнеры с товарами любых видов (стопка может быть изначально пустой).Автопогрузчик может взять верхний контейнер из любой стопки и поставить его сверху в любую стопку. Необходимо расставить все контейнеры с товаром первого вида в первую стопку, второго вида — во вторую стопку и т.д.
Программа должна вывести последовательность действий автопогрузчика или сообщение о том, что задача решения не имеет.
В первой строке задается одно натуральное число N, не превосходящее 500. В следующих N строках описаны стопки контейнеров: сначала записано число ki — количество контейнеров в стопке, а затем ki чисел — виды товара в контейнерах в данной стопке, снизу вверх. В каждой стопке вначале не более 500 контейнеров (в процессе переноса контейнеров это ограничение может быть нарушено).
Выведите описание действий автопогрузчика: для каждого действия укажите два числа — из какой стопки брать контейнер и в какую стопку класть. (Обратите внимание, что минимизировать количество операций автопогрузчика не требуется.) Если задача не имеет решения, выдайте одно число 0. Если контейнеры изначально правильно размещены по стопкам, выводить ничего не надо.
Оценка задачи
1 балл будут получать программы, верно работающие при следующих ограничениях: количество стопок не больше 10, в каждой стопке не более 10 контейнеров.
Комментарий к примеру:
Изначально в первой стопке лежат четыре контейнера — снизу контейнер с товаром первого вида, над ним — с товаром второго вида, над ним — третьего, и сверху — еще один контейнер с товаром второго вида.
Одна из правильных последовательностей действий (вместо ответа в примере задачи):
1 2
1 3
1 2
3 4 1 2 3 2 0 0
1