Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Рассмотрим фигуру, аналогичную показанной на рисунке (большой равносторонний треугольник, составленный из маленьких равносторонних треугольников). На рисунке приведена фигура, состоящая из 4-х уровней треугольников.

Напишите программу, которая будет определять, сколько всего в ней треугольников (необходимо учитывать не только "маленькие" треугольники, а вообще все треугольники — в частности, треугольник, выделенный жирным, а также вся фигура, являются интересующими нас треугольниками).

Входные данные

Вводится одно число \(N\) — количество уровней в фигуре (\(1\le N \le 100000\)).

Выходные данные

Выведите  количество треугольников в такой фигуре.

Примеры
Входные данные
1
Выходные данные
1
Входные данные
2
Выходные данные
5
Входные данные
4
Выходные данные
27
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

По двум однополосным дорогам едут машины. На перекрестке эти дороги сливаются в одну однополосную (машины едут как раз в ее сторону). На этом самом перекрестке стоит постовой милиционер, который регулирует движение, а именно, выбирает, с какой из двух дорог в данный момент машины будут заезжать.

В каждый момент времени либо одна из дорог является "активной", т.е. перекресток проезжают машины с этой дороги, либо регулировщик производит переключение потока на другую дорогу (в этот момент никакие машины через перекресток не едут). На то, чтобы "переключить" поток, тратится время Т.

В некоторый момент образовалась пробка. На 1-й дороге скопилось N машин, а на 2-й — M. Для каждой машины известно время, которое ей потребуется для проезда развилки, если она первая в очереди и ее дорога "активна".

Требуется разработать план действий для постового по переключению потоков, при котором среднее время ожидания машины минимально (временем ожидания машины называется время с момента образования пробки до того момента, когда данная машина заканчивает проезжать перекресток; для вычисления среднего времени суммируются времена ожидания всех машин и полученная сумма делится на общее количество машин). В начальный момент активна первая дорога.

Входные данные

Сначала вводятся числа T, N и M, затем N чисел — времена проезда перекрестка машинами с первой дороги (в порядке удаления от перекрестка), а затем M чисел — времена проезда перекрестка машинами со второй дороги.

<>Все числа  целые неотрицательные, все времена не превосходят 100, T ≤ 100, N, M ≤ 1000, N+M > 0.

Выходные данные

В первой строке  выведите одно число — минимальное среднее время ожидания c точностью 10–3. Далее выводите информацию о машинах в порядке их проезда перекрестка и о переключении потока  следующим образом.

  • Для каждой машины выведите информацию в формате:

Car k from road i

где k — номер машины на своей дороге (ближайшая к перекрестку в момент образования пробки машина имеет номер 1, следующая на той же дороге — 2 и т.д.), i — номер дороги: 1 или 2.

  • Для каждого переключения потока выведите информацию:

Switch road from 1 to 2

для переключения потока с первой дороги на вторую или

Switch road from 2 to 1

для переключения потока со второй дороги на первую.

Информация обо всех событиях (переключениях и проездах через перекресток) должна выводиться именно в том порядке, в котором они происходят.

Если решений несколько, выведите любое из них.

Оценка задачи

1 балл будет набирать решение, верно работающее при N, M ≤ 10.

Примеры
Входные данные
1 2 2
5 6 
1 7 
Выходные данные
11.500
Switch road from 1 to 2
Car 1 from road 2
Switch road from 2 to 1
Car 1 from road 1
Car 2 from road 1
Switch road from 1 to 2
Car 2 from road 2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Компания BrokenTiles планирует заняться выкладыванием во дворах у состоятельных клиентов узоров из черных и белых плиток, каждая из которых имеет размер 1 х 1 метр. Известно, что дворы всех состоятельных людей имеют наиболее модную на сегодня форму прямоугольника N х M метров. Однако при составлении финансового плана у директора этой организации появилось целых две серьезных проблемы: во-первых, каждый новый клиент, очевидно, захочет, чтобы узор, выложенный у него во дворе, отличался от узоров всех остальных клиентов этой фирмы, а во-вторых, этот узор должен быть симпатичным.

Как показало исследование, узор является симпатичным, если в нем нигде не встречается квадрата 2 х 2 метра, полностью покрытого плитками одного цвета. Для составления финансового плана директору Васе необходимо узнать, сколько клиентов он сможет обслужить, прежде чем симпатичные узоры данного размера закончатся. Помогите ему!

Входные данные

Вводятся два положительных целых числа N и M (1 ≤ N · M ≤ 30).

Выходные данные

Выведите единственное число –  количество различных симпатичных узоров, которые можно выложить во дворе размера N х M. Узоры, получающиеся друг из друга сдвигом, поворотом или отражением, считаются различными.

Примеры
Входные данные
1 2
Выходные данные
4
Входные данные
2 3
Выходные данные
50
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Со времен написания условия предыдущей задачи многое изменилось. Симпатичные узоры (о том, что это такое – см. задачу "Симпатичные узоры") стали очень популярны по всему миру, поэтому люди готовы содержать очень большой участок земли, лишь бы иметь на ней узор, не встречающийся больше нигде.

Теперь компания BrokenTiles является ведущим производителем симпатичных узоров в мире! Для составления плана исполнительному директору Васе по-прежнему необходимо знать, сколько клиентов могут рассчитывать на узор данных размеров.

Так как масштабы буквально мировые, N <= 10100. Однако Вася не любит большие числа, поэтому просит выдать ответ по модулю P.

Входные данные

В первой строке входных данных  содержатся три положительных целых числа, разделенные пробелом – N, M и P (1 <= N <= 10100, 1 <= M <= 5, 1 <= P <= 10 000).

Выходные данные

Выведите  количество различных симпатичных узоров N x M по модулю P .

Примеры
Входные данные
2 2 5
Выходные данные
4
Входные данные
3 3 42
Выходные данные
28
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Рассмотрим ориентированный граф G, имеющий n вершин, пронумерованных натуральными числами от 1 до n. В графе G возможно наличие нескольких дуг между одной и той же парой вершин, а также дуг, ведущих из вершины в нее саму. Каждая дуга графа помечена некоторой буквой латинского алфавита. Каждому пути в графе G можно поставить в соответствии строку, состоящую из букв, написанных на последовательно проходимых в соответствии с этим путем дугах. Эта строка называется путевой меткой пути. Назовем строку S путевой строкой графа G, если в нем существует путь, путевая метка которого равна S.

Ваша задача посчитать остаток от деления на 1 000 000 количества путевых строк графа G, состоящих ровно из L символов.

Входные данные

В первой строке входных данных записаны целые числа n, m, L (1 ≤ n  ≤ 10, 1 ≤ m ≤ 10 000, 1 ≤  L ≤ 100), равные количеству вершин и ребер графа G, а также длине путевых строк, которые нужно искать. Следующие m строк задают дуги графа G. Каждая из этих строк содержит два натуральных числа a, b (1 ≤  a, ≤ n) и маленькую латинскую букву c, что означает наличие дуги из вершины a в вершину b, помеченной символом c. Элементы каждой строки отделены друг от друга пробелами.

Выходные данные

Единственная строка выходных данных должна содержать одно число, равное остатку от деления количества путевых строк длины L в графе G на 1 000 000.

Примеры
Входные данные
4 4 100
1 2 a
2 3 b
3 4 a
4 1 b
Выходные данные
2

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест