Системы счисления(36 задач)
"Длинная" арифметика(58 задач)
Простые числа и разложение на множители(45 задач)
Остатки(21 задач)
Быстрое возведение в степень(3 задач)
Быстрое преобразование Фурье(3 задач)
Сегодня мальчик Саша на уроке математики узнал про фракталы. Учитель показывал так называемую «кривую дракона». Она представляет собой геометрическую фигуру, которая строится следующим образом: на первом шаге проводится отрезок из начала координатной плоскости в точку (0; 1). Далее на каждом шаге из конца фрактала повторяется уже нарисованная часть фигуры, повернутая на 90 градусов против часовой стрелки (см. рисунок).
После уроков Саша попробовал сам изобразить «кривую дракона», и теперь он хочет знать, в какой точке координатной плоскости он закончил рисовать фрактал, проделав описанные выше N шагов. Требуется написать программу, которая по заданному числу N определяет координаты конца фрактала после выполнения N шагов.
Вводится одно целое число N (1 ≤ N ≤ 30).
Выведите два числа через пробел — координаты конца фрактала.
2
1 1
4
2 -2
Дано натуральное число \(n>1\). Выведите его наименьший простой делитель.
Решение оформите в виде функции MinDivisor(n)
. Алгоритм должен
иметь сложность \(O(\sqrt{n})\).
Указание. Если у числа \(n\) нет делителя не превосходящего \(\sqrt{n}\), то число \(n\) — простое и ответом будет само число \(n\).
Вводится натуральное число.
Выведите ответ на задачу.
4
2
5
5
Для быстрого вычисления наибольшего общего делителя двух чисел используют алгоритм Евклида. Он построен на следующем соотношении: \(НОД(a, b)=НОД(b, a\bmod b)\).
Реализуйте рекурсивный алгоритм Евклида в виде функции gcd(a, b)
.
Вводится два целых числа.
Выведите ответ на задачу.
12 14
2
256 48
16
Сегодня на уроке математики Петя и Вася изучали понятие арифметической прогрессии. Арифметической прогрессией с разностью d называется последовательность чисел a1, a2, …, ak, в которой разность между любыми двумя последовательными числами равна d. Например, последовательность 2, 5, 8, 11 является арифметической прогрессией с разностью 3.
После урока Петя и Вася придумали новую игру с числами. Игра проходит следующим образом.
В корзине находятся n фишек, на которых написаны различные целые числа a1, a2, …, an. По ходу игры игроки выкладывают фишки из корзины на стол. Петя и Вася делают ходы по очереди, первым ходит Петя. Ход состоит в том, что игрок берет одну фишку из корзины и выкладывает ее на стол. Игрок может сам решить, какую фишку взять. После этого он должен назвать целое число d ≥ 2 такое, что все числа на выбранных к данному моменту фишках являются членами некоторой арифметической прогрессии с разностью d, не обязательно последовательными. Например, если на столе выложены фишки с числами 2, 8 и 11, то можно назвать число 3, поскольку эти числа являются членами приведенной в начале условия арифметической прогрессии с разностью 3.
Игрок проигрывает, если он не может сделать ход из-за отсутствия фишек в корзине или из-за того, что добавление любой фишки из корзины на стол приводит к тому, что он не сможет подобрать соответствующее число d.
Например, если в корзине имеются числа 2, 3, 5 и 7, то Петя может выиграть. Для этого ему необходимо первым ходом выложить на стол число 3. После первого хода у него много вариантов назвать число d, например он может назвать d = 3. Теперь у Васи два варианта хода.
Заметим, что любой другой первый ход Пети приводит к его проигрышу. Если он выкладывает число 2, то Вася отвечает числом 7, и Петя не может выложить ни одной фишки. Если Петя выкладывает фишку с числом 5 или 7, то Вася выкладывает фишку с числом 2, и у Пети также нет допустимого хода.
Требуется написать программу, которая по заданному количеству фишек n и числам на фишках a1, a2, …, an определяет, сможет ли Петя выиграть вне зависимости от действий Васи, и находит все возможные первые ходы Пети, ведущие к выигрышу.
Первая строка входного файла содержит целое число n (1 ≤ n ≤ 200).
Вторая строка содержит n различных целых чисел a1, a2, …, an (для всех i от 1 до n выполняется неравенство 1 ≤ ai ≤ 105). Соседние числа разделены ровно одним пробелом.
Первая строка выходного файла должна содержать число k — количество различных первых ходов, которые может сделать Петя, чтобы выиграть. Если Вася может выиграть вне зависимости от действий Пети, строка должна содержать цифру 0.
Во второй строке должно содержаться k различных целых чисел — все выигрышные числа. Будем называть число выигрышным, если, выложив в качестве первого хода фишку, содержащую это число, Петя может выиграть вне зависимости от действий Васи. Соседние числа в строке должны быть разделены ровно одним пробелом.
Первый пример рассматривается в тексте условия этой задачи.
Во втором примере, какую бы фишку не выложил Петя первым ходом, Вася в ответ выкладывает другую фишку, и Петя не может сделать ход из-за отсутствия фишек в корзине.
4 2 3 5 7
1 3
2 2 4
0
На досуге вы любите почитать сборники занимательных задач по математике. Недавно вы наткнулись в одном из таких сборников на следующую задачу:
Есть бесконечный резервуар с водой и два пустых сосуда объёмом 5 и 12 литров. Можно наливать воду из резервуара в любой сосуд до его заполнения, переливать воду из —одного сосуда в другой до заполнения второго или опустошения первого (смотря что будет раньше) и выливать воду из сосуда на землю до полного опустошения сосуда. Как таким образом можно отмерить 3 литра?
Вы решили написать программу, которая будет решать подобные задачи для произвольных объёмов сосудов.
Во входном файле находятся три целых числа — \(V_1\), \(V_2\) и \(V\) — объёмы двух сосудов и объем воды, который нужно отмерить. Гарантируется, что \(1\leq V_1,V_2\leq 32767\) и \(0\leq V\leq \max(V_1,V_2)\).
В первую строку выходного файла выведите одно число — количество действий в вашем решении. Далее выведите соответствующее количество строк, описывающих действия в вашем решении. Для каждого действия выведите два числа:
После выполнения всех операций хотя бы в одном сосуде должна находиться вода в объёме \(V\).
Если существует несколько решений, то вы можете вывести любое. Ваше решение не обязано быть оптимальным, единственное ограничение — размер выходного файла не должен превосходить 3 Мб.
Если решений не существует, выведите одно число -1
.
5 12 3
10 0 1 1 2 2 1 1 2 0 1 1 0 0 1 1 2 0 1 1 2