Правительство страны Ректилании решило построить новый город. По плану правительства, город должен быть построен на сетке M на N прямоугольных участков, размером 100 на 100 метров. Все улицы должны иметь ширину 100 метров и занимать соответственно одну горизонталь или вертикаль сетки. Вертикальные улицы должны пролегать по вертикалям с номерами X1...XV, горизонтальные – по горизонталям с номерами Y1...YH. При этом улицы не соприкасаются, то есть не бывает Xi = Xi-1 + 1 и соответственно Yj = Yj-1 + 1 .
Все дома в новом городе должны занимать одну клетку сетки. Причем все дома должны находиться рядом с улицами, а в клетках, не имеющих общих сторон с улицами, будет разбит парк. Кроме того, дома не должны находиться на наружной стороне крайних улиц. Рисунок 1 изображает план города, рассмотренного в примере.
Теперь правительство Ректилании хочет знать, сколько домов будет построено в новом городе и сколько в нем будет клеток парка. Ваша задача состоит в том, чтобы написать программу, которая рассчитает эти величины.
На первой строке входного файла находятся числа M, N, V и H. (2 ≤ V < M ≤ 1000, 2 ≤ H < N ≤ 1000). На второй строке находятся координаты вертикальных улиц — V чисел: 1 = X1 < X2 < … < XV = M. На третьей строке находятся координаты горизонтальных улиц — H чисел 1 = Y1 < Y2 < … < YH = N. Все числа в строках разделены пробелами.
Выведите в выходной файл три числа: A – количество домов в новом городе, B — количество клеток, в которых будет разбит парк и C — количество клеток, по которым будут пролегать улицы. Разделяйте числа пробелами.
4 4 2 2 1 4 1 4
4 0 12
Ежедневно диспетчеру железнодорожной станции "Москва-Сортировочная" приходится переставлять вагоны во многих поездах, чтобы они шли в заданном порядке. Для этого диспетчер может расцепить пришедший на станцию состав в произвольных местах и переставить образовавшиеся сцепки из одного или нескольких вагонов в произвольном порядке. Порядок вагонов в одной сцепке менять нельзя, также нельзя развернуть всю сцепку так, чтобы последний вагон в сцепке оказался первым в ней.
Диспетчер просит вашей помощи в определении того, какое минимальное число соединений между вагонами необходимо расцепить, чтобы переставить вагоны в составе в требуемом порядке.
В первой строке входного файла содержится целое число N, (1N100). Во второй строке содержится перестановка натуральных чисел от 1 до N (то есть все натуральные числа от 1 до N в некотором порядке). Числа разделяются одним пробелом. Эта перестановка задает номера вагонов в приходящем на станцию составе. Требуется, чтобы в уходящем со станции составе вагоны шли в порядке их номеров.
Программа должна записать в выходной файл единственное целое число, равное минимальному количеству соединений между вагонами, которое нужно расцепить в данном составе, чтобы их можно было переставить по порядку.
4 3 1 2 4
2
5 5 4 3 2 1
4
2 1 2
0
Как известно, обычно штаны состоят из двух штанин. Однако собачке нужны, например, уже штаны из 5 штанин (для 4-х лап и хвоста), а сороконожке – штаны с 40 штанинами.
У Пети живет Зверь, у которого M лап. Иногда – когда на улице особенно холодно, чтобы Зверь не простудился, на него бывает нужно надеть несколько штанов, чтобы на каждой лапе было надето по несколько штанин.
Петина мама оставила Пете N штанов, имеющих соответственно K1, K2, …, KN штанин, наказав ему надеть на Зверя их все. Петя хочет надеть на Зверя штаны так, чтобы на самой «утепленной» лапе оказалось как можно меньше штанин, но при этом все оставленные мамой штаны были надеты на зверя. Любые штаны можно надевать на любой набор лап (каждая лапа встречается в наборе не более одного раза).
Помогите ему – напишите программу, которая для каждых штанов укажет, на какие лапы должны быть надеты их штанины. Имейте в виду, что две штанины одних и тех же штанов не могут быть надеты на одну и ту же лапу (в то время как штанины разных штанов могут быть надеты на одну и ту же лапу).
Вводится сначала число M, а затем число N (1 ≤ M ≤ 100, 1 ≤ N ≤ 100). Далее вводятся N чисел Ki, обозначающих число штанин у оставленных мамой штанов (1 ≤ Ki ≤ M).
Выведите N строк, в i-ой строке должно быть выведено Ki различных чисел, обозначающих номера лап Зверя, на которые должны быть надеты штанины i-ых штанов. Лапы Зверя нумеруются натуральными числами от 1 до M. Если искомых ответов несколько, то выведите любой из них.
Комментарии к примерам тестов.
1. Первые штаны надеты на лапу 1;
вторые штаны надеты на лапы 1 и 2;
третьи штаны надеты на лапы 2, 3 и 4.
Таким образом, на самых «утепленных» лапах (а это лапы 1 и 2) надето по 2 штанины.
2. Первые штаны надеты на лапы 1, 2 и 3;
вторые штаны надеты на лапы 1 и 4.
Таким образом, количество штанов на самой «утепленной» лапе (это лапа номер 1) – 2.
4 3 1 2 3
1 2 3 4 1 2
4 2 3 2
1 2 3 4 1
По дороге одна за другой движутся N черепах. Каждая черепаха говорит фразу вида: “Впереди меня ai черепах, а позади меня bi черепах”. Ваша задача определить самое большее количество черепах, которые могут говорить правду.
Широко известна следующая задача для младших школьников. Три черепахи ползут по дороге. Одна черепаха говорит: “Впереди меня две черепахи”. Другая черепаха говорит: “Позади меня две черепахи”. Третья черепаха говорит: “Впереди меня две черепахи и позади меня две черепахи”. Как такое может быть? Ответ: третья черепаха врет!
По дороге одна за другой движутся N черепах. Каждая черепаха говорит фразу вида: “Впереди меня ai черепах, а позади меня bi черепах”. Ваша задача определить самое большое количество черепах, которые могут говорить правду.
В первой строке вводится целое число N \((1 \le N \le 10000)\). Далее следуют N строк, содержащих целые числа ai и bi, по модулю не превосходящие 10000, описывающие высказывание i-ой черепахи.
Данные о высказываниях черепах приведены в произвольном порядке, то есть первое высказывание не обязательно соответствует черепахе, идущей во главе колонны, второе - не обязательно следующей за ней и так далее
Выведите целое число M – максимальное количество черепах, которые могут говорить правду.
3 2 0 0 2 2 2
2
Петя впервые пришел на урок физкультуры в новой школе. Перед началом урока ученики выстраиваются по росту, в порядке невозрастания. Напишите программу, которая определит на какое место в шеренге Пете нужно встать, чтобы не нарушить традицию, если заранее известен рост каждого ученика и эти данные уже расположены по невозрастанию (то есть каждое следующее число не больше предыдущего). Если в классе есть несколько учеников с таким же ростом, как у Пети, то программа должна расположить его после них.
Сначала задано число \(N\) — количество учеников (не считая Петю)(\(1 \le N \le 100\)). Далее через пробел записаны \(N\) чисел — элементы массива. Массив состоит из натуральных чисел, не превосходящих 200 (рост учеников в сантиметрах). Затем, на новой строке, вводится рост самого Пети.
Необходимо вывести единственное число - номер Пети в шеренге учеников.
8 165 163 160 160 157 157 155 154 162
3