Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
Ваня и Петя играют в следующую игру. Ваня пишет на бумаге какую-либо перестановку чисел от 1 до \(N\) (то есть выписывает все числа от 1 до \(N\) в некотором порядке) и расставляет на столе в ряд \(N\) предметов. После этого Петя переставляет предметы в соответствии с Ваниной перестановкой. А именно, Петя выполняет следующие действия: если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте, на место с номером \(a_i\).
Обозначим предметы числами от 1 до \(N\). Тогда начальное расположение предметов можно обозначить последовательностью чисел (1, 2, ..., \(N\)). К примеру, если \(N\) = 5, то начальное расположение предметов есть (1, 2, 3, 4, 5). Пусть Ваня написал перестановку <2, 5, 4, 3, 1>. Это значит, что после перемещения предметов они окажутся расставлены в следующем порядке: (5, 1, 4, 3, 2).
Однако, переставив предметы, Петя не останавливается на достигнутом и вновь переставляет их в соответствии с Ваниной перестановкой. Снова, если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте на место с номером \(a_i\). Так, если в приведенном выше примере повторно применить перестановку, предметы окажутся расположены в следующем порядке: (2, 5, 3, 4, 1).
Таким образом, Петя переставляет предметы в соответствии с Ваниной перестановкой, пока их расположение не окажется таким же, как исходное. В нашем примере Пете потребуется сделать еще 4 действия, порядок предметов после каждого из них будет следующим: (1, 2, 4, 3, 5), (5, 1, 3, 4, 2), (2, 5, 4, 3, 1), (1, 2, 3, 4, 5). Всего Пете потребовалось применить перестановку 6 раз.
Добрый Ваня хочет, чтобы Пете пришлось выполнить как можно больше действий. Помогите ему выбрать соответствующую перестановку.
Вводится единственное целое число \(N\) - количество предметов (1 <= \(N\) <= 100).
Выведите перестановку чисел от 1 до \(N\) такую, что количество действий, которое придется сделать Пете, максимально. Если таких перестановок несколько, можно вывести любую.
5
2 1 4 5 3
Петя склеил из \(N^3\) единичных кубиков большой куб размером \(N\) × \(N\) × \(N\). Устав от этой сложной работы, он отправился спать, а утром, проснувшись, с ужасом обнаружил, что его младший брат Ваня \(K\) раз проткнул куб спицей.
При этом Ваня действовал очень аккуратно, каждый раз установив конец спицы точно в центр грани какого-нибудь граничного единичного кубика, он протыкал куб параллельно соответствующей оси координат, при этом целый ряд из \(N\) кубиков оказывался испорчен.
Немного успокоившись после этого тяжелого потрясения, Петя заинтересовался, сколько кубиков в его творении осталось неповрежденными. Помогите ему ответить на этот сложный вопрос.
В первой строке вводятся числа \(N\) и \(K\) (1 <= \(N\) <= 1000, 0 <= \(K\) <= 150). Следующие K строк описывают Ванины преступные действия. Каждая строка содержит три числа - два из них представляют собой соответствующие координаты всех кубиков, проткнутых спицей, а третье, соответствующее координате, в направлении которой был проткнут куб, равно 0. Например, если \(N\) = 3, тройка (1, 0, 3) означает, что спицей были проткнуты кубики (1, 1, 3), (1, 2, 3) и (1, 3, 3). Все координаты лежат в пределах от 1 до \(N\). Известно, что Ваня никакое действие не выполнял два раза (т.е. никакая тройка не встретится во входных данных дважды).
Выведите единственное число - количество неповрежденных кубиков.
5 3 1 2 0 2 3 0 3 3 0
110
Будильник в сотовом телефоне можно настроить так, чтобы он звонил каждый день в одно и то же время, либо в указанное время в определенный день недели. Независимо можно настроить несколько будильников.
По информации о будильниках и текущему времени и дню недели определите, когда прозвонит очередной будильник.
В первой строке вводятся три числа, задающие текущее время: день недели (от 1 до 7), часы и минуты.
Во второй строке вводится одно натуральное число N, не превосходящее 100 – количество будильников.
В следующих N строках вводятся описания N будильников. Описание каждого будильника состоит из трех чисел: дня недели (число от 1 до 7 для понедельника, …, воскресенья, соответственно, 0 – если будильник должен звонить каждый день), часов (от 0 до 23), минут (от 0 до 59).
Выведите через пробел три числа, задающие день недели, часы и минуты, когда прозвонит ближайший будильник.
Комментарий. Во втором примере третий будильник будет звенеть в начальный момент времени.2 10 20 2 1 23 15 0 10 10
3 10 10
7 1 1 3 7 0 59 7 23 59 7 1 1
7 1 1
Напишите программу, вычисляющую остаток от деления заданного «длинного» числа на заданную цифру.
В первой строке задана цифра K (1≤K≤9). Во второй строке задано натуральное число N, состоящее из не более чем 250 цифр.
Выведите остаток от деления N на K.
Примеры
Входные данные | Выходные данные |
5 123456789 | 4 |
1 123 | 0 |
Правительство страны Ректилании решило построить новый город. По плану правительства, город должен быть построен на сетке M на N прямоугольных участков, размером 100 на 100 метров. Все улицы должны иметь ширину 100 метров и занимать соответственно одну горизонталь или вертикаль сетки. Вертикальные улицы должны пролегать по вертикалям с номерами X1...XV, горизонтальные – по горизонталям с номерами Y1...YH. При этом улицы не соприкасаются, то есть не бывает Xi = Xi-1 + 1 и соответственно Yj = Yj-1 + 1 .
Все дома в новом городе должны занимать одну клетку сетки. Причем все дома должны находиться рядом с улицами, а в клетках, не имеющих общих сторон с улицами, будет разбит парк. Кроме того, дома не должны находиться на наружной стороне крайних улиц. Рисунок 1 изображает план города, рассмотренного в примере.
Теперь правительство Ректилании хочет знать, сколько домов будет построено в новом городе и сколько в нем будет клеток парка. Ваша задача состоит в том, чтобы написать программу, которая рассчитает эти величины.
На первой строке входного файла находятся числа M, N, V и H. (2 ≤ V < M ≤ 1000, 2 ≤ H < N ≤ 1000). На второй строке находятся координаты вертикальных улиц — V чисел: 1 = X1 < X2 < … < XV = M. На третьей строке находятся координаты горизонтальных улиц — H чисел 1 = Y1 < Y2 < … < YH = N. Все числа в строках разделены пробелами.
Выведите в выходной файл три числа: A – количество домов в новом городе, B — количество клеток, в которых будет разбит парк и C — количество клеток, по которым будут пролегать улицы. Разделяйте числа пробелами.
4 4 2 2 1 4 1 4
4 0 12