---> 154 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 14 15 16 17 18 19 20 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На заводе каждая из N деталей может быть обработанной на одном из двух станков: A или B. Каждая деталь имеет порядковый номер от 1 до N. К обработке детали поступают последовательно, в соответствии со своими номерами. Количество деталей всегда четно.

Существуют правила, по которым определяется можно ли обрабатывать деталь на определенном станке.

  1. Если на текущий момент на станке B было обработано такое же количество деталей, как и на станке A, то следующая деталь должна быть обработана на станке A.
  2. В итоге на каждом из станков должно быть обработано одинаковое количество деталей.

Сколько людей, столько и мнений. Каждый из работников этого завода предложил свою последовательность обработки деталей, причем все предложения оказались разными, но удовлетворяющими правилам 1 и 2.

Напишите программу, которая по информации о количестве деталей N определяет максимально возможное количество работников завода.

Входные данные

Единственная строка входного файла содержит четное число N (2N≤28) – количество деталей которое необходимо обработать.

Выходные данные

Единственная строка выходного файла должна содержать целое число – максимально возможное количество работников завода.

Комментарий к примеру тестов

Первый работник считает, что на станке A необходимо обработать детали 1 и 2, а на станке B, соответственно, 3 и 4. Второй думает, что на станке A нужно обработать детали 1 и 3, а на станке B – детали 2 и 4. Других вариантов последовательности обработки не существует.

Примеры
Входные данные
4
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

На кольцевом маршруте суммарной длиной L километров на равном расстоянии друг от друга расположены N остановок (пронумерованных от 1 до N). По этому маршруту движутся M автобусов с одинаковой скоростью v километров в час так, что интервал между двумя идущими друг за другом автобусами один и тот же для всех автобусов (интервалом между автобусами будем называть время, которое проходит между приездом на одну и ту же остановку двух идущих друг за другом автобусов). Автобусы пронумерованы числами от 1 до M. Движение происходит в направлении увеличения номеров остановок.

В некоторый момент времени на всем участке между остановками номер X и Y (не обязательно соседними) начался ремонт дороги, из-за чего скорость движения на этом участке стала w километров в час. Скорость на ремонтируемом участке может оказаться как меньше обычной, так и больше за счет регулировщиков на этом участке дороги. При этом автобусы продолжили движение по маршруту с максимально возможной скоростью (w на ремонтируемом участке и v на остальном). Однако из-за этого интервалы движения между автобусами перестали быть равными.

Если какой-нибудь автобус оказался между остановками X и Y в момент начала ремонта, то он мгновенно меняет свою скорость с v на w, и едет с этой скоростью на протяжении всего ремонтируемого участка. Миновав его, он опять начинает ехать с нормальной скоростью v.

Известно, что в тот момент, когда начался ремонт, автобус номер один находился на остановке номер 1. В тот момент, когда этот автобус в следующий раз оказался на остановке номер 1, на эту остановку пришел диспетчер и стал измерять интервалы между автобусами. Он записывал интервалы между двумя автобусами до тех пор, пока автобус номер один опять не оказался на остановке номер 1.

Напишите программу, которая по информации о параметрах маршрута и ремонтируемом участке определит максимальный из интервалов времени, записанных диспетчером.

Входные данные

В единственной строке входного файла через пробел записаны целые числа L, N, M, X, Y, v, w.

<>1 ≤ L, M, v, w ≤ 109, 2 ≤ N ≤ 109, 1 ≤ X < YN.

Выходные данные

Выведите одно число с точностью до пяти знаков после десятичной точки — время в часах, равное максимальному интервалу между двумя автобусами, записанному диспетчером.

Частичные ограничения

Первая группа состоит из тестов, в которых v = w.

Вторая группа состоит из тестов, в которых M = 2 (при этом v не обязательно равно w).

Примеры
Входные данные
9 4 3 2 4 5 5
Выходные данные
0.600000000
Входные данные
16 4 2 1 2 5 4
Выходные данные
1.800000000
Входные данные
15 4 3 2 3 5 9
Выходные данные
1.000000000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Кодовый замок состоит из \(N\) рычажков, каждый из которых может быть установлен в любое из \(K\) положений, обозначенных натуральными числами от 1 до \(K\). Известно, что для того чтобы открыть замок, нужно, чтобы сумма положений любых трех последовательных рычажков была равна \(K\).

Два рычажка уже установлены в некоторые положения, и их переключать нельзя. Рычажок с номером \(p_1\) установлен в положение \(v_1\), а рычажок \(p_2\) – в положение \(v_2\).

Напишите программу, которая определит, сколькими способами можно установить остальные рычажки, чтобы открыть замок.

Входные данные

Вводятся натуральные числа \(N\), \(K\), \(p_1\), \(v_1\), \(p_2\), \(v_2\). 3 ≤ \(N\) ≤ 100 000, 3 ≤ \(K\) ≤ 100 000, \(p_1\) ≠ \(p_2\), 1 ≤ \(p_1\) ≤ \(N\), 1 ≤ \(p_2\) ≤ \(N\), 1 ≤ \(v_1\) ≤ \(K\), 1 ≤ \(v_2\) ≤ \(K\).

Выходные данные

Выведите одно число — количество искомых комбинаций или 0, если, соблюдая все условия, замок открыть невозможно.

Примеры
Входные данные
3 3 1 1 2 1
Выходные данные
1
Входные данные
3 3 1 1 3 2
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Слова в языке Мумба-Юмба могут состоять только из букв \(a\), \(b\) и при этом:

* никогда не содержат двух букв \(b\) подряд,
* ни в одном слове никогда не встречается три одинаковых подслова подряд. Например, по этому правилу в язык Мумба-Юмба не могут входить слова aaa (так как три раза подряд содержит подслово a), ababab (так как три раза подряд содержит подслово ab), aabababa (также три раза подряд содержит подслово ab).
Все слова, удовлетворяющие вышеописанным правилам, входят в язык Мумба-Юмба.
Напишите программу, которая подсчитает количество слов длины ровно \(K\) символов в языке племени Мумба-Юмба.

Входные данные

Вводится одно число \(K\) (1 ≤ \(K\) ≤ 100 000)

Выходные данные

Выведите одно число — количество слов в этом языке длины \(K\).

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Кодовый замок состоит из \(N\) рычажков, каждый из которых может быть установлен в любое из \(K\) положений, обозначенных натуральными числами от 1 до \(K\). Известно, что для того чтобы открыть замок, нужно, чтобы сумма положений любых трех последовательных рычажков была равна \(K\).

Два рычажка уже установлены в некоторые положения, и их переключать нельзя. Рычажок с номером \(p_1\) установлен в положение \(v_1\), а рычажок \(p_2\) – в положение \(v_2\).

Напишите программу, которая определит, сколькими способами можно установить остальные рычажки, чтобы открыть замок.

Входные данные

Вводятся натуральные числа \(N\), \(K\), \(p_1\), \(v_1\), \(p_2\), \(v_2\). Рычажки пронумерованы числами от 1 до \(N\).

3 ≤ \(N\) ≤ 10000, 3 ≤ \(K\) ≤ 6, \(p_1\)≠\(p_2\), 1 ≤ \(p_1\) ≤ \(N\), 1 ≤ \(p_2\) ≤ \(N\), 1 ≤ \(v_1\) ≤ \(K\), 1 ≤ \(v_2\) ≤ \(K\).

Выходные данные

Выведите одно число — количество искомых комбинаций или 0, если, соблюдая все условия, замок открыть невозможно.


Страница: << 14 15 16 17 18 19 20 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест