---> 58 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 6 7 8 9 10 11 12 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вычислите 2n

Входные данные

Единственное целое неотрицательное число n, не превосходящее 20000

Выходные данные

Выведите ответ на поставленную задачу

Примеры
Входные данные
10
Выходные данные
1024
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На планете Роботов очень не любят десятичную систему счисления, поэтому они попросили Вас написать программу, которая заменяет все встречающиеся в тексте числа на эти же числа, но в двоичной системе счисления.

Входные данные

Единственная строка, состоящая из любых символов. Длина строки не превышает 255 символов. Гарантируется, что во всех числах нет ведущих нулей.

Выходные данные

Выведите преобразованную строку.

Примеры
Входные данные
6^&678JKjdkdl;?.,lk879Pk1kdfl4839
Выходные данные
110^&1010100110JKjdkdl;?.,lk1101101111Pk1kdfl1001011100111
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Во Флатландии с некоторых пор процветают феодальные отношения – у каждого порядочного феодала есть ровно два вассала, у непорядочных – вассалов нет совсем. Каждый феодал строит свой замок в городе на прямой, при этом:

  • высота замка (всегда целое положительное число) должна быть строго больше высот замков его вассалов (для соблюдения субординации).
  • замки первого из двух вассалов и всех вассалов этого вассала должны быть построены слева, второго вассала и его вассалов – справа (для пресечения междоусобиц). Это правило должно выполняться для всех
  • высота замка должна быть минимально возможной (для экономии ресурсов)
  • число всех подчиненных (непосредственно или через промежуточных) у правого и левого вассалов одинаково (для баланса сил).

Для удобства замки феодалов занумерованы натуральными числами по порядку слева направо, начиная с единицы, и разбиты на улицы. Улица (i, j) представляет собой последовательность подряд идущих замков, начиная с замка под номером i и заканчивая замком с номером j (i j)

Однажды в город приехал новый феодал и пожелал выкупить там замок у одного из жителей. Также ему стало интересно узнать социальный статус соседей по улице, однако, город к тому времени так разросся, что феодал уже не мог сделать этого самостоятельно. Напишите программу, которая поможет ему!

Входные данные

Первая строка входного файла содержит число N (1 ≤ N ≤ 30000) — высота замка единственного главного феодала в городе, который никому не подчиняется. Далее, в следующих двух строках идут числа i и j (\(0 \leq i, j < 10^{10000}\)), задающие улицу (i, j), на которой хочет приобрести замок новый феодал (гарантируется, что замки с номерами i и j находятся в черте города, i j, ji ≤ 105).

В выходной файл требуется вывести высоты всех замков на указанной улице слева направо через пробел.

Примечание

Будут оцениваться и частичные решения задачи при малых N. Частичные решения для N<20 набирают до 40 баллов, а для N<50 набирают не более 70 баллов.

Ввод
Вывод
2
1
3
1 2 1
3
3
7
1 3 1 2 1
50
128873293
128873293
1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Этим летом у бабушки был большой урожай яблок. Она собрала яблоки в корзину и отдала своим \(K\) внукам.

Первый внук взял из корзины половину всех яблок и еще \(a_1\) яблоко (если количество яблок не делилось на два, то результат деления на два он мог округлить как в большую сторону, так и в меньшую). К примеру, если в корзине было 7 яблок и \(a_1 = 1\), то он мог взять либо 4, либо 5, а если было 6 яблок и \(a_1 = 1\), то он взял ровно 4.

Второй внук взял половину от всех оставшихся яблок и ещё \(a_2\) (если яблок было нечетное количество, то он также мог округлить половину как в большую, так и в меньшую сторону). И так далее, \(K\)-ый внук взял половину яблок, оставшихся после \(K - 1\) внука, и ещё \(a_k\). В итоге в корзине ничего не осталось.

Теперь они задумались, насколько же большой урожай был у бабушки. Ни один из них не помнит, делилось ли количество яблок на 2 нацело при его выборе, а если нет, то в какую сторону он округлил половину яблок. Внуков интересует минимальное и максимальное изначальное количество яблок в корзине, при которых могли произойти описанные события.

Входные данные

Сначала вводится целое положительное число \(K\) (\(1 \le K \le 1\,000\)). Далее записано \(K\) целых неотрицательных чисел \(a_1, \dots , a_K\) (\(0 \le a_i \le 1\,000\)).

Выходные данные

Выведите два неотрицательных целых числа без ведущих нулей, каждое в новой строке - минимальное и максимальное возможное количество яблок в корзине соответственно.

Примеры
Входные данные
1
1
Выходные данные
1
3
Входные данные
2
0 1
Выходные данные
1
7

Страница: << 6 7 8 9 10 11 12 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест