Темы --> Информатика --> Алгоритмы --> Арифметические алгоритмы --> Простые числа и разложение на множители
---> 45 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Найдите самый маленький натуральный делитель числа x, отличный от 1 (2 <= x <= 30000).

Входные данные

Вводится натуральное число x.

Выходные данные

Выведите наименьший делитель числа x, отличный от 1.

Примеры
Входные данные
6
Выходные данные
2

Выведите все натуральные делители числа x в порядке возрастания (включая 1 и само число).

Входные данные

Вводится натуральное число x

Выходные данные

Выведите все делители числа x

Примеры
Входные данные
32
Выходные данные
1 2 4 8 16 32 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Подсчитайте количество натуральных делителей числа x (включая 1 и само число; \(x \le 2 * 10^9\)).

Входные данные

Вводится натуральное число x.

Выходные данные

Выведите единственное число - количество делителей числа x.

Примеры
Входные данные
32
Выходные данные
6
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дано выражение p1/p2/.../pn. Требуется определить, сколько различных значений и целых значений оно может принимать при всевозможных расстановках скобок.

Известно, что сложение и умножение являются ассоциативными операциями. Это значит, что значение выражений вида \(a_1\) + \(a_2\) +...+ \(a_n\) и \(a_1\) . \(a_2\) . ... . \(a_n\) не зависит от порядка выполнения в них действий и, следовательно, не меняется при произвольной расстановке в этих выражениях скобок.

В отличие от сложения и умножения, деление – операция не ассоциативная. Так, значение выражения вида \(a_1\)/\(a_2\)/ ... /\(a_n\) может меняться при расстановке в нем скобок.

Рассмотрим выражение вида

\(p_1\)/\(p_2\)/ ... /\(p_n\),

где все \(p_i\) – простые числа (не обязательно различные). Найдите количество возможных значений, которые может принять указанное выражение после расстановки в нем скобок, а также количество целых чисел среди этих значений. Например, выражение 3/2/2 после расстановки скобок может принять два значения: 3/4 = (3/2)/2 и 3 = 3/(2/2).

В первой строке вводится число \(n\) ( 1\( \le\)n\( \le\)200). Следующая строка содержат \(n\) натуральных чисел – \(p_1\), \(p_2\),..., \(p_n\). Все числа \(p_i\) простые и не превосходят \(10^4\).

Выходные данные

В первой строке выведите количество возможных значений, которые может принять выражение \(p_1\)/\(p_2\)/ ... /\(p_n\) при заданных \(p_i\) после расстановки в нем скобок. Во второй строке выведите количество целых чисел среди этих значений.

Примеры
Входные данные
3
3 2 2
Выходные данные
2
1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Требуется сгенерировать перестановку, которая при применении к массиву 1..N возвращает его в исходное состояние за наибольшее количество применений.

Ваня и Петя играют в следующую игру. Ваня пишет на бумаге какую-либо перестановку чисел от 1 до \(N\) (то есть выписывает все числа от 1 до \(N\) в некотором порядке) и расставляет на столе в ряд \(N\) предметов. После этого Петя переставляет предметы в соответствии с Ваниной перестановкой. А именно, Петя выполняет следующие действия: если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте, на место с номером \(a_i\).

Обозначим предметы числами от 1 до \(N\). Тогда начальное расположение предметов можно обозначить последовательностью чисел (1, 2, ..., \(N\)). К примеру, если \(N\) = 5, то начальное расположение предметов есть (1, 2, 3, 4, 5). Пусть Ваня написал перестановку <2, 5, 4, 3, 1>. Это значит, что после перемещения предметов они окажутся расставлены в следующем порядке: (5, 1, 4, 3, 2).

Однако, переставив предметы, Петя не останавливается на достигнутом и вновь переставляет их в соответствии с Ваниной перестановкой. Снова, если i-ое число в Ваниной перестановке равно \(a_i\), то Петя ставит предмет, который стоит на i-ом месте на место с номером \(a_i\). Так, если в приведенном выше примере повторно применить перестановку, предметы окажутся расположены в следующем порядке: (2, 5, 3, 4, 1).

Таким образом, Петя переставляет предметы в соответствии с Ваниной перестановкой, пока их расположение не окажется таким же, как исходное. В нашем примере Пете потребуется сделать еще 4 действия, порядок предметов после каждого из них будет следующим: (1, 2, 4, 3, 5), (5, 1, 3, 4, 2), (2, 5, 4, 3, 1), (1, 2, 3, 4, 5). Всего Пете потребовалось применить перестановку 6 раз.

Добрый Ваня хочет, чтобы Пете пришлось выполнить как можно больше действий. Помогите ему выбрать соответствующую перестановку.

Входные данные

Вводится единственное целое число \(N\) - количество предметов (1 <= \(N\) <= 100).

Выходные данные

Выведите перестановку чисел от 1 до \(N\) такую, что количество действий, которое придется сделать Пете, максимально. Если таких перестановок несколько, можно вывести любую.

Примеры
Входные данные
5
Выходные данные
2 1 4 5 3 


Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест