Динамическое программирование на таблицах(46 задач)
Динамическое программирование по подстрокам(21 задач)
Задача о рюкзаке(34 задач)
Вася и Петя играют в следующую игру. Они берут колоду из 36 карточек. На каждой карточке написано число от 1 до 9 и каждая карточка покрашена в один из 4 цветов так, что есть ровно по 9 карточек каждого цвета и они пронумерованы числами от 1 до 9. Карты перемешиваются, и игрокам раздается по 18 карт.
Дальше игроки по очереди делают ходы. За один ход игрок может выложить на стол одну карточку по следующим правилам. Карточку с цифрой 5 можно выкладывать на стол в любой момент. Карточку с другой цифрой можно выкладывать только если на стол уже выложена карточка того же цвета, на которой написано число на 1 большее или на 1 меньшее, чем на данной карточке (не важно, была ли эта карточка выложена вами или вашим противником, и была ли она выложена на предыдущем ходе или раньше). Если игрок может выложить хоть какую-то карточку, он обязан делать ход. Если ни одну карточку игрок выложить не может, он пропускает ход.
Выигрывает тот, кто первым выложит все свои карточки на стол.
Напишите программу, которая по информации о том, кому какие карточки достались, определяет, кто выиграет при оптимальной игре обоих игроков.
Во входном файле записаны 18 пар чисел, описывающих карточки, которые достались первому игроку. Каждая карточка описывается двумя числами — номером цвета (от 1 до 4) и цифрой, которая написана на карточке (от 1 до 9). Второму игроку, соответственно, достались все остальные карточки.
В выходной файл выведите одно число (1 или 2) — номер игрока, который выиграет при оптимальной игре обоих игроков.
1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9
1
Решая задачу по информатике, Вова в очередной раз допустил ошибку. Он снова вывел в выходной файл числа, забыв разделить их пробелами. Увидев полученный результат, Вова сначала огорчился, а потом задумался над следующим вопросом: сколько существует различных последовательностей неотрицательных целых чисел, таких что, если выписать их без пробелов, то получится тот же результат, что и у него. Он вспомнил также, что его программа смогла вывести не произвольные числа, а только те, что не превосходят C и не имеют ведущих нулей.
Чтобы ответить на поставленный вопрос, Вова решил написать программу, которая позволит ему найти число различных последовательностей неотрицательных целых чисел, в каждой из которых любое число не превосходит C. Он понимал, что такое число могло быть достаточно большим, поэтому ограничился поиском только последних k цифр этого числа.
Требуется написать программу, которая покажет Вове, как можно правильно решить поставленную им задачу.
Первая строка входного файла содержит три целых числа — n, C и k (1 ≤ n ≤ 50000, 1 ≤ C ≤ 108, 1 ≤ k ≤ 18). Во второй строке этого файла содержится результат работы Вовиной программы, состоящий из n цифр.
В выходной файл выведите последние k цифр искомого количества последовательностей (без ведущих нулей).
Разбалловка для личной олимпиады
Тесты 1-8 — \(n \le 7\) Оценивается в 30 баллов.
Тесты 9-53 — дополнительных ограничений нет. Группа тестов оценивается в 70 баллов.
3 11 2 111
3
19 9 1 0123456789876543210
1
1 8 3 9
0
На роботизированном складе имеется N отсеков, в которые робот может размещать грузы. Отсек с номером i имеет вместимость ci. Груз с номером i имеет размер si, поступает на склад в момент времени ai и забирается со склада в момент времени di.
Когда груз с номером i поступает на склад, робот сначала пытается найти отсек, в котором достаточно свободного места для размещения этого груза. Свободное место в пустом отсеке совпадает с его вместимостью. Если в отсеке с вместимостью c находится несколько грузов с суммарным размером d, то свободное место в этом отсеке равно c – d.
Если отсеков, в которых достаточно свободного места, несколько, то робот помещает груз в тот из них, в котором свободного места меньше. Если и таких отсеков несколько, то робот выбирает отсек с минимальным номером.
Если отсеков с достаточным количеством свободного места нет, робот пытается переместить грузы, уже расположенные в отсеках. Для этого он пытается найти такой отсек и такой груз в нем, что перемещение его в другой отсек обеспечивает достаточное количество свободного места для размещения поступившего груза. Если таких вариантов перемещения грузов несколько, то выбирается тот вариант, в котором потребуется перемещение груза с минимальным размером. Если и таких вариантов несколько, то выбирается тот вариант перемещения, при котором в отсеке, из которого перемещается груз, после перемещения свободное место будет минимально, а при прочих равных — тот, при котором в отсеке, в который осуществляется перемещение, свободное место после перемещения будет минимально. Если и после этого остается более одного варианта, то выбирается тот вариант, при котором номер перемещаемого груза минимален, и номер отсека, в который он перемещается, – также минимален. Если варианта с перемещением одного груза найти не удалось, то груз не принимается на склад.
Требуется написать программу, которая по списку грузов, поступающих для размещения на складе, выводит последовательность действий, выполняемых роботом.
Первая строка содержит два целых числа: N — количество отсеков, и M — количество грузов (1 ≤ N ≤ 10, 1 ≤ M ≤100). Вторая строка содержит N целых чисел ci, определяющих вместимости отсеков (1 ≤ ci ≤ 109). Последующие M строк описывают грузы: каждый груз описывается тремя целыми числами: своим размером si, временем поступления на склад ai и временем, когда его забирают со склада di (1 ≤ si ≤ 109, 1 ≤ ai < di ≤ 1000, все времена во входном файле различны, грузы упорядочены по возрастанию времени поступления на склад). Все числа в строках разделены пробелом.
Выведите последовательность действий робота в том порядке, в котором они выполняются. Следуйте формату, приведенному в примере.
Возможны следующие сообщения:
put cargo X to cell Y — положить груз с номером X в отсек с номером Y;
move cargo X from cell Y to cell Z — переложить груз с номером X из отсека с номером Y в отсек с номером Z;
take cargo X from cell Y — достать груз с номером X из отсека с номером Y.
cargo X cannot be stored — если груз с номером X разместить невозможно.
1 2 3 2 1 2 4 3 4
put cargo 1 to cell 1 take cargo 1 from cell 1 cargo 2 cannot be stored
Поле для игры с шашками – длинная горизонтальная полоска, размеченная на клетки. Клетки пронумерованы от 1 до N (2 < N < 10000). На поле стоят две шашки. Позиция каждой из шашек определяется номером клетки, в которой она стоит.
Играют двое. Каждый игрок при своем ходе должен переместить любую шашку на одну, две или три клетки в сторону клетки 1 (сделать 1, 2 или 3 шага). Перепрыгивать через стоящую впереди шашку нельзя, но можно сдваивать шашки. На сдваивание шашек тратится два шага из трех доступных игроку (то есть сдваивать можно либо шашки, стоящие вплотную друг к другу, либо шашки, между которыми есть только одна пустая клетка). Если произошло сдваивание – ход передается другому игроку, который делает ход одной шашкой , оставив другую на месте.
Выигрывает тот, кто сдвоит шашку на клетке с номером 1.
Требуется написать программу, реализующую алгоритм, обеспечивающий победу игроку, начинающему игру.
В первой строке содержится число K (0 < K < 10) – количество начальных позиций. В последующих K строках содержится по два целых числа от 3 до 10000, разделенных пробелом – номера начальных позиций шашек на игровом поле.
Выводится K строчек – ответ на каждую начальную позицию.
Если при заданной начальной позиции шашек в игре не достигается выигрыш (при правильной игре противника) выводится слово NO.
Если выигрыш достижим, то выводится первый ход начинающего игру, который приводит к его выигрышу независимо от того, как играет соперник. Ход описывается парой чисел i, j через пробел, означающих, что выигрышный ход игрока – это перемещение шашки из клетки с номером i в клетку с номером j. Например, «4 3» означает, что игрок двигает шашку, стоящую в клетке 4, на одну клетку в сторону клетки 1.
6 3 10 3 11 4 12 5 8 9 15 3 12
YES NO
Около Петиного университета недавно открылось новое кафе, в котором действует следующая система скидок: при каждой покупке более чем на 100 рублей покупатель получает купон, дающий право на один бесплатный обед (при покупке на сумму 100 рублей и меньше такой купон покупатель не получает).
Однажды Пете на глаза попался прейскурант на ближайшие N дней. Внимательно его изучив, он решил, что будет обедать в этом кафе все N дней, причем каждый день он будет покупать в кафе ровно один обед. Однако стипендия у Пети небольшая, и поэтому он хочет по максимуму использовать предоставляемую систему скидок так, чтобы его суммарные затраты были минимальны. Требуется найти минимально возможную суммарную стоимость обедов и номера дней, в которые Пете следует воспользоваться купонами.
В первой строке входного файла записано целое число N (0≤N≤100). В каждой из последующих N строк записано одно целое число, обозначающее стоимость обеда в рублях на соответствующий день. Стоимость — неотрицательное целое число, не превосходящее 300.
В первой строке выдайте минимальную возможную суммарную стоимость обедов. Во второй строке выдайте два числа K1 и K2 — количество купонов, которые останутся неиспользованными у Пети после этих N дней и количество использованных им купонов соответственно.
В последующих K2 строках выдайте в возрастающем порядке номера дней, когда Пете следует воспользоваться купонами. Если существует несколько решений с минимальной суммарной стоимостью, то выдайте то из них, в котором значение K1 максимально (на случай, если Петя когда-нибудь ещё решит заглянуть в это кафе). Если таких решений несколько, выведите любое из них.
5 35 40 101 59 63
235 0 1 5