---> 164 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 8 9 10 11 12 13 14 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Вершины графа находятся в точках пересечения линий сетки, а горизонтальные или вертикальные ребра единичной длины существуют только между ближайшими вершинами. Необходимо пройти по каждому ребру как минимум один раз совершив как можно меньше переходов.

Недавно Билл устроился на работу полицейским. Теперь ему предстоит каждый вечер обходить свой участок, который представляет собой прямоугольник, состоящий из N×M кварталов. Каждый квартал имеет вид квадрата размером 100×100 метров, кварталы отделены друг от друга прямыми улицами.

Таким образом, через участок Билла проходит \(N\) + 1 улица, идущая с запада на восток и \(M\) + 1 улица, идущая с севера на юг. Перекрестки разбивают улицы на (\(N\) + 1)\(M\) + (\(M\) + 1)\(N\) отрезков, каждый из которых имеет длину 100 метров.

Совершая обход, Билл выходит из полицейского управления, расположенного около юго-западного угла его участка, обходит свой участок и возвращается в управление. Во время обхода Билл должен пройти по каждому отрезку улицы на территории своего участка как минимум один раз. Известно, что во время обхода Билл проходит отрезок длиной 100 метров за одну минуту. Выясните, какое минимальное число минут потребуется Биллу, чтобы совершить обход.

Входные данные

Вводятся целые числа N и M, разделенные пробелом (1\( \le\)N, M\( \le\)10 000).

Выходные данные

Выведите минимальное время, за которое Билл может совершить обход.

Пояснение ко второму примеру

Один из возможных оптимальных путей для Билла во втором примере показан на рисунке.

Примеры
Входные данные
1 1
Выходные данные
4
Входные данные
2 2
Выходные данные
16
Входные данные
3 4
Выходные данные
38
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Яша плавал в бассейне размером \(N\) x \(M\) метров и устал. В этот момент он обнаружил, что находится на расстоянии \(x\) метров от одного из длинных бортиков (не обязательно от ближайшего) и \(y\) метров от одного из коротких бортиков. Какое минимальное расстояние должен проплыть Яша, чтобы выбраться из бассейна на бортик?

Входные данные

Вводятся 4 натуральных числа: \(N\), \(M\), \(x\), \(y\) (N ≠ M), разделенные пробелами. Все числа не превосходят 100.

Выходные данные

Требуется вывести одно число – минимальное расстояние, которое должен проплыть Яша, чтобы выбраться на бортик.

Примеры
Входные данные
23 52 8 43
Выходные данные
8
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На прямой тропинке на расстоянии 1 метр друг от друга сидят два кузнечика. Время от времени один из кузнечиков прыгает на несколько сантиметров влево или вправо. Требуется узнать, каково было минимальное расстояние, на которое сближались кузнечики в процессе прыжков. (Расстояние считается только в те моменты, когда оба кузнечика сидят на земле).

Входные данные

В первой строке вводится одно число \(N\) (1 ≤ \(N\) ≤ 100) – общее количество прыжков, а затем \(N\) чисел, описывающих прыжки. Модуль числа равен длине прыжка в сантиметрах; число отрицательное, если кузнечик начинал этот прыжок по направлению к другому кузнечику, и положительное – если от другого кузнечика. Числа по модулю не превосходят 100 и все отличны от 0. (Кузнечики могут перепрыгивать друг через друга. Гарантируется, что кузнечики не приземляются друг на друга.)

Выходные данные

Требуется вывести одно число – минимальное расстояние в сантиметрах, на которое сближались кузнечики.

Примеры
Входные данные
5
1
2
3
4
5
Выходные данные
100
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Есть куб состоящий из единичных кубиков. Заданы наборы кубиков, проткнутые спицей вдоль одной из осей. Требуется подсчитать количество оставшихся кубиков.

Петя склеил из \(N^3\) единичных кубиков большой куб размером \(N\) × \(N\) × \(N\). Устав от этой сложной работы, он отправился спать, а утром, проснувшись, с ужасом обнаружил, что его младший брат Ваня \(K\) раз проткнул куб спицей.

При этом Ваня действовал очень аккуратно, каждый раз установив конец спицы точно в центр грани какого-нибудь граничного единичного кубика, он протыкал куб параллельно соответствующей оси координат, при этом целый ряд из \(N\) кубиков оказывался испорчен.

Немного успокоившись после этого тяжелого потрясения, Петя заинтересовался, сколько кубиков в его творении осталось неповрежденными. Помогите ему ответить на этот сложный вопрос.

Входные данные

В первой строке вводятся числа \(N\) и \(K\) (1 <= \(N\) <= 1000, 0 <= \(K\) <= 150). Следующие K строк описывают Ванины преступные действия. Каждая строка содержит три числа - два из них представляют собой соответствующие координаты всех кубиков, проткнутых спицей, а третье, соответствующее координате, в направлении которой был проткнут куб, равно 0. Например, если \(N\) = 3, тройка (1, 0, 3) означает, что спицей были проткнуты кубики (1, 1, 3), (1, 2, 3) и (1, 3, 3). Все координаты лежат в пределах от 1 до \(N\). Известно, что Ваня никакое действие не выполнял два раза (т.е. никакая тройка не встретится во входных данных дважды).

Выходные данные

Выведите единственное число - количество неповрежденных кубиков.

Примеры
Входные данные
5 3
1 2 0
2 3 0
3 3 0
Выходные данные
110
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

По заданному числу определить название месяца.

Входные данные

Вводится одно натуральное число \(N\), 1 ≤ \(N\) ≤ 12

Выходные данные

Программа выводит КОД месяца согласно таблице:

Примеры
Входные данные
1
Выходные данные
YAN

Страница: << 8 9 10 11 12 13 14 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест