Вы решили заказать пиццу с доставкой на дом. Известно, что для клиентов, сделавших заказ на сумму более \(C\) рублей, доставка является бесплатной, при заказе на \(C\) рублей и меньше доставка стоит \(B\) рублей. Вы уже выбрали товара стоимостью \(A\) рублей. В наличии имеются еще \(N\) товаров стоимостью \(d_1, ..., d_N\) рублей, каждый в единственном экземпляре. Их также можно включить в заказ. Как потратить меньше всего денег и получить на дом уже выбранный товар стоимостью \(A\) рублей?
Вводятся сначала числа \(A, B, C, N,\) а затем \(N\) чисел \(d_1, ..., d_N\). Все числа целые, \(1 \le A \le 1000, 1 \le B ≤ 1000, 1 \le C \le 1000, 0 \le N \le 1000, 1 \le di \le 1 000 000\).
Выведите единственное число – суммарное количество денег, которое придется потратить.
10 17 25 5 2 7 5 3 7
26
100 1 50 5 5 2 4 3 1
100
10 14 25 5 2 7 5 3 7
24
Завтра Петя уезжает в кругосветное путешествие, в процессе которого собирается посетить N разных городов. Вспомнив о старинной традиции бросать монетки в фонтаны для того, чтобы когда-нибудь вернуться в это место, он решил запастись монетами заранее. Поскольку это всего лишь традиция, подумал Петя, то с него хватит оставить в каждом городе по одной копеечной монете – зачем тратиться зря?
К сожалению, копеечные монеты – достаточно редкая вещь. В частности, таковых у Пети не нашлось. Купюр и монет всех остальных достоинств у него с избытком.
С этими мыслями Петя решил прогуляться до продуктового магазина – купить в дорогу немного еды. Из всего ассортимента ему подходило M видов товара (количество товаров каждого вида неограниченно), стоимость i-го равна ai рублей bi копеек. И тут его осенило. Если покупать товары в правильной последовательности, то он довольно быстро сможет скопить так нужные ему N копеечных монет!
Процесс покупки в магазине устроен следующим образом. Петя может заказать любой набор из подходящих ему товаров (каждого товара Петя может взять сколько угодно единиц). После чего он платит за них и получает сдачу минимальным числом купюр и монет (любых монет и купюр в кассе также с избытком). Это означает, например, что если ему должны сдать 11 рублей и 98 копеек сдачи, то он получит купюру в 10 рублей, монеты в 1 рубль, 50 копеек, 4 монеты в 10 копеек, одну монету в 5 копеек и три копеечных монеты. При этом он волен вносить любую сумму (лишь бы она была не меньше требуемой для оплаты) и платить любым набором купюр и монет, имеющихся у него в распоряжении.
После этого Петя может ещё раз подойти к кассе, сделать заказ, расплатиться имеющимися наличными (можно использовать и полученные до этого со сдачей) и так далее сколько угодно раз.
Петя хочет потратить в этом магазине как можно меньше денег. Помогите ему найти оптимальный способ обретения не менее N копеечных монет с минимальными затратами.
Комментарий для нероссийских участников олимпиады.
В России используются монеты и купюры достоинством 1, 5, 10, 50 копеек и 1, 2, 5, 10, 50, 100, 500, 1000 и 5000 рублей. 1 рубль равен 100 копейкам.
Сначала вводятся целые числа N и M (0 ≤ N ≤ 108, 0 ≤ M ≤ 100) — количество городов, которые собирается посетить Петя, и количество подходящих ему видов товара. Далее идут M пар чисел ai, bi, обозначающих стоимость товара соответствующего типа (0 ≤ ai ≤ 100, 0 ≤ bi ≤ 99). Стоимость товара всегда больше нуля.
Если требуемое количество копеечных монет получить невозможно, выведите –1. Иначе выведите минимальную сумму, которую должен потратить Петя на покупку товаров, чтобы получить N однокопеечных монет. Сумма должна быть выведена как два целых числа, задающих рубли и копейки (второе число обязано быть от 0 до 99).
3 1 0 2
0 2
4 2 1 2 0 4
0 16
1 3 0 1 0 4 0 6
0 1
Даны N золотых слитков известных масс. Определите, какую наибольшую массу золота можно унести, если вместимость рюкзака не превышает S.
Программа получает на вход целое число S — вместимость рюкзака, не превосходящее 10000 и количество слитков N, не превосходящее 300. Далее следует N целых неотрицательных чисел, не превосходящих 100000 — веса слитков.
Программа должна вывести единственное целое число — максимально возможных вес золота, который поместится в данный рюкзак.
10 3 5 7 4
9
Дано N предметов массой m1, …, mN и стоимостью c1, …, cN соответственно.
Ими наполняют рюкзак, который выдерживает вес не более M. Какую наибольшую стоимость могут иметь предметы в рюкзаке?
Формат входных данных
В первой строке вводится натуральное число N, не превышающее 100 и натуральное число M, не превышающее 10000.
Во второй строке вводятся N натуральных чисел mi, не превышающих 100.
Во третьей строке вводятся N натуральных чисел сi, не превышающих 100.
Выведите одно целое число: наибольшую возможную стоимость рюкзака.
4 6 2 4 1 2 7 2 5 1
13
Дано N предметов массой m1, …, mN и стоимостью c1, …, cN соответственно.
Ими наполняют рюкзак, который выдерживает вес не более M. Определите набор предметов, который можно унести в рюкзаке, имеющий наибольшую стоимость.
В первой строке вводится натуральное число N, не превышающее 100 и натуральное число M, не превышающее 10000.
Во второй строке вводятся N натуральных чисел mi, не превышающих 100.
В третьей строке вводятся N натуральных чисел сi, не превышающих 100.
Выведите номера предметов (числа от 1 до N), которые войдут в рюкзак наибольшей стоимости.
4 6 2 4 1 2 7 2 5 1
1 3 4