---> 55 задач <---
Источники
    Личные олимпиады(938 задач)
    Командные олимпиады(684 задач)
Страница: << 5 6 7 8 9 10 11 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Дана последовательность чисел. Необходимо переставить все числа (кроме одного фиксированного) так, чтобы сумма модулей разностей соседних чисел была минимальна.

После пожара 1812 года на одной из главных улиц Москвы уцелел лишь один дом. Вернувшиеся после победы жители решили вновь поселиться на этой улице. При этом каждый решил построить себе дом такой же высоты, каким он был у него до пожара.

Дома будут строиться вплотную друг другу, а крыши соседних домов будут соединяться лестницами (длина лестницы равна разнице высот домов), чтобы трубочист мог путешествовать по крышам и чистить трубы.

Когда план постройки домов был уже почти утвержден, свое веское слово сказал Главный Трубочист. Он попросил построить дома так, чтобы суммарная длина лестниц была минимальной. Помогите ему составить такой план постройки домов.

Входные данные

Во входном файле записано сначала число N (1  N 10000), затем N чисел — высоты домов до пожара (это натуральные числа от 1 до 109), и затем K — номер уцелевшего дома.

Выходные данные

В выходной файл выведите высоты домов в таком порядке, чтобы выполнялось требование Главного Трубочиста. Обратите внимание, что K-ый дом (уцелевший) перестраивать не нужно (и следовательно его высота должна остаться прежней).

Примеры
Входные данные
5
1 3 4 2 6
2
Выходные данные
6 3 4 2 1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Помимо открыток Петя и Вася решили устроить одноклассницам чаепитие и заразили своей идеей еще K–2 своих друзей. Они собрались вместе и выбрали в одном довольно известном супермаркете P тортиков. Настал черед рассчитываться за них.

В магазине есть N работающих касс, занумерованных числами от 1 до N. Про i-ю кассу известно, что кассиру требуется Ai единиц времени на обработку одного товара и Bi единиц времени для того, чтобы рассчитаться с покупателем. Обойдя все кассы, школьники посчитали, что на обслуживание покупателей, уже стоящих в i-ю кассу, уйдет Ti единиц времени.

Теперь Петя и Вася задались вопросом, в какие кассы надо встать им и их друзьям (в каждую из выбранных касс должен стоять хотя бы один из них, и каждый из них может стоять не более, чем в одну кассу, поэтому суммарно они могут стоять не более чем в K касс) и сколько тортиков каждый должен взять, чтобы последний из них вышел из магазина как можно раньше. Некоторые из ребят могут в кассу не стоять, а, отдав все тортики другим, выйти через специальный выход для тех, кто ничего не купил.

Напишите программу, которая определит это минимальное время.

Входные данные

В первой строке записано одно число N — количество касс в супермаркете (1 ≤ N ≤ 100000). В следующих N строках записано по три числа Ai, Bi, Ti (0 ≤ Ai, Bi, Ti ≤ 100000). В последней строке записаны два числа — K и P — число школьников и покупок у них соответственно (0 ≤ P ≤ 100000, 2 ≤ K ≤ 100000).

Все числа во входном файле целые.

Выходные данные

Выведите минимальное время выхода последнего школьника из магазина.

Комментарии к примерам тестов

Здесь лучше всего встать в обе кассы и купить там по одному тортику.

Выгоднее всего одному из школьников встать со всеми тортиками в первую кассу, а остальным выйти без покупок.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 10 и оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N K ≤ 100000 и оценивается в 30 баллов.

Третья группа состоит из тестов без дополнительного ограничения и оценивается в 40 баллов.

Примеры
Входные данные
2
100 10 40
10 100 50
2 2
Выходные данные
160
Входные данные
3 
1 2 0
5 2 1
2 10 1
3 5
Выходные данные
7
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Дано N чисел, требуется выяснить, сколько среди них различных.

Входные данные

В первой строке дано число N – количество чисел. (1 <= N <= 100000) Во второй строке даны через пробел N чисел, каждое не превышает 2*109 по модулю.

Выходные данные

Выведите число, равное количеству различных чисел среди данных.

Примеры
Входные данные
5
1 0 1 2 0
Выходные данные
3

В классе учатся N человек. Классный руководитель получил указание направить на субботник R бригад по С человек в каждой.

Все бригады на субботнике будут заниматься переноской бревен. Каждое бревно одновременно несут все члены одной бригады. При этом бревно нести тем удобнее, чем менее различается рост членов этой бригады.

Числом неудобства бригады будем называть разность между ростом самого высокого и ростом самого низкого членов этой бригады (если в бригаде только один человек, то эта разница равна 0). Классный руководитель решил сформировать бригады так, чтобы максимальное из чисел неудобства сформированных бригад было минимально. Помогите ему в этом!

Рассмотрим следующий пример. Пусть в классе 8 человек, рост которых в сантиметрах равен 170, 205, 225, 190, 260, 130, 225, 160, и необходимо сформировать две бригады по три человека в каждой. Тогда одним из вариантов является такой:

1 бригада: люди с ростом 225, 205, 225

2 бригада: люди с ростом 160, 190, 170

При этом число неудобства первой бригады будет равно 20, а число неудобства второй — 30. Максимальное из чисел неудобств будет 30, и это будет наилучший возможный результат.

Формат входных данных

Сначала вводятся натуральные числа N, R и C — количество человек в классе, количество бригад и количество человек в каждой бригаде (1 ≤ RCN ≤ 100 000). Далее вводятся N целых чисел — рост каждого из N учеников. Рост ученика — натуральное число, не превышающее 1 000 000 000.

Формат выходных данных

Выведите одно число — наименьше возможное значение максимального числа неудобства сформированных бригад.

Примеры
Входные данные
8 2 3
170
205
225
190
260
130
225
160
Выходные данные
30
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дано множество строк W. Необходимо найти минимальное множество строк X, такое, что путем конкатенации строк мн-ва X можно составить то же мн-во, что и путем конкатенации строк W

Рассмотрим две строки \(α\) и \(β\). Их конкатенацией называется строка, получающаяся в результате приписывания к строке \(α\) строки \(β\). Эта строка обозначается \(αβ\). Например, конкатенацией строк `ab' и `ac' будет строка `abac'. Очевидно, что это определение естественным образом распространяется на конкатенацию произвольного количества строк. Так, конкатенацией нуля строк будет пустая строка, а конкатенацией одной строки будет она сама.

Рассмотрим некоторое множество \(W\), состоящее из строк. Назовём его замыканием множество \(W\)*, состоящее из тех и только тех строк, которые можно получить в результате конкатенации нуля и более строк из множества \(W\). Таким образом, множество \(W\)* содержит пустую строку, и если строка α принадлежит множеству \(W\)*, а строка \(β\) принадлежит множеству \(W\), то строка \(αβ\) принадлежит множеству \(W\)*. Более того, все элементы множества \(W\)* можно представить в таком виде, то есть \(W\)* является пересечением всех множеств с указанными выше свойствами. Например, если \(W\)={a,ab}, то \(W\)* состоит из всех строк, в которых перед каждой буквой `b' идёт хотя бы одна буква `a'.

Задано некоторое множество строк \(W\). Требуется найти множество \(X\), такое, что \(W\)*=\(X\)* и множество \(X\) имеет минимальное возможное число элементов. В случае, если таких множеств несколько, подходит любое из них. Например, если \(W\)={a,aabb,ab,ac,b,bac}, то единственным множеством, удовлетворяющим условиям задачи будет множество {a,ac,b}.

Входные данные

Входной файл состоит из набора строк, каждая из которых является элементом множества \(W\). Каждая строка из множества \(W\) встречается во входном файле хотя бы один раз. Суммарная длина всех строк во входном файле не превосходит \(10^4\). Количество строк во входном файле не превосходит \(10^4\). После каждой строки из множества \(W\) во входном файле идёт перевод строки (пара символов с ASCII кодами 13 и 10). Строки состоят из символов с ASCII кодами от 33 до 126 включительно.

Выходные данные

Выведите в выходной файл элементы одного из множеств \(X\), удовлетворяющих условиям задачи. Каждая строка множества \(X\) должна быть выведена ровно один раз. Строки должны идти в лексикографическом порядке (лексикографический порядок используется в словарях, в этом порядке строка `ab' меньше строки `aba' и строка `ab' меньше строки `ac'). После каждой строки множества \(X\) должен идти один перевод строки.

Примеры
Входные данные
a
aabb
ab
ac
b
bac
Выходные данные
a
ac
b

Страница: << 5 6 7 8 9 10 11 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест