Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Дана символьная строка S длины N (0 N 100) и словарь, который содержит M слов (0 M 100), длина каждого из которых не превышает N. Строка и слова состоят из символов a, b, …, z.
Напишите программу, которая определяет наименьшее количество символов, которое необходимо вычеркнуть из заданной строки S, чтобы результирующую строку можно было представить как последовательность слов словаря. Количество использований каждого слова не ограничивается. Считается, что пустую строку можно представить с помощью слов любого словаря.
Строка в примере после вычеркивания лишних букв f и t примет вид abachdsya (было сделано два вычеркивания: abafchtdsya), и может быть представлена как последвательность следующих слов: a, bach, dsy, a.
В первой строке входного файла находится два целых числа N и M, оразделенных пробелом. Во второй строке находится символьная строка S. В каждой из следующих M строк находится слово словаря.
В единственной строке выходного файла должно находиться натуральное число – минимальное количество вычеркиваний, после которых зашифрованная строка может быть представлена в виде последовательности слов словаря.
11 5 abafchtdsya aba a bach dsy zero
2
С целью подготовки к проведению олимпиады по информатике мэр решил обеспечить надежным электроснабжением все школы города. Для этого необходимо провести линию электропередач от альтернативного источника электроэнергии “Майбуття” к одной из школ города (к какой неважно), а также соединить линиямии электропередач некоторые школы между собой.
Считается, что школа имеет надежное электроснабжение, если она напрямую связана с источником “Майбуття”, либо с одной из тех школ, которые имеют надежное электроснабжение.
Известна стоимость соединения между некоторыми парами школ. Мэр города решил выбрать одну из двух наиболее экономичных схем электроснабжения (стоимость схемы равняется сумме стоимостей соединений пар школ).
Напишите программу, которая вычисляет стоимость двух наиболее экономных схем альтернативного электроснабжения школ.
В первой строке входного файла находятся два натуральных числа, разделенных пробелом:N (3 ≤ N ≤ 100), количество школ в городе, и M – количество возможных соединений между ними. В каждой из последующих M строк находятся по три числа: Ai, Bi, Ci, разделенных пробелами, где Ci – стоимость прокладки линии электроснабжения (1 ≤ Ci ≤ 300) от школы Ai до школы Bi (i=1,2,…,N).
В единственной строке выходного файла должны содержаться два натуральных числа S1 и S2, разделенных пробелом – две наименьшие стоимости схем (S1 ≤ S2). S1=S2 тогда и только тогда, когда существует несколько схем надежного электроснабжения наименьшей стоимости.
Гарантируется, что для входных данных существует две различные схемы надёжного электроснабжения.
5 8 1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66
110 121
X1,Y1), (X2,Y2), (X3,Y3). Найти длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник так, чтобы все вершины треугольника находились внутри квадрата либо на его сторонах.
Составьте программу, которая по координатам вершин треугольника находит длину L стороны квадрата минимальной площади, в который можно поместить этот треугольник. L достаточно найти с точностью 10-4.
Файл содержит в одной строке действительные числа X1 Y1 X2 Y2 X3 Y3, разделенные пробелами, – координаты вершин треугольника (-10000 X1, Y1, X2, Y2, X3, Y3 10000).
Файл должен содержать одно число - длину L стороны искомого квадрата.
0.0 0.0 1.1 0.0 0.0 1.1
1.100000000