---> 17 задач <---
    COCI 2016-2017(0 задач)
    COCI 2015-2016(36 задач)
    COCI 2014-2015(0 задач)
Страница: 1 2 3 4 >> Отображать по:
ограничение по времени на тест
0.5 second;
ограничение по памяти на тест
32 megabytes

Петар организует вечеринку по случаю своего дня рождения и планирует пригласить некоторых сотрудников из компании, где он работает генеральным директором. Каждый сотрудник, включая Петара, имеет уникальный номер от 1 до N и тип шуток, которые он рассказывает, V i . Также, каждый сотрудник в компании кроме Петара имеет ровно одного начальника. Так как Петар - генеральный директор компании, он имеет номер 1 и руководит всеми сотрудниками (не обязательно напрямую).

На вечеринке есть некоторые правила, которым должны отвечать все присутствующие: 1. На вечеринке не должно быть двух людей с одинаковым типом шуток. 2. Человек не может быть приглашен на вечеринку, если на нее не приглашен его прямой начальник. 3. Человек не может быть приглашен на вечеринку, если типы шуток, которые рассказывает он и его приглашенные подчиненные, не образуют последовательное множество.

Петар хочет знать, сколько возможных наборов типов шуток может быть на его вечеринке, если он пригласит людей в соответствии с вышеуказанными правилами.

Последовательное множество - такое множество, в котором, если отсортировать его по возрастанию, разность между соседними элементами будет равна 1. Например (3, 1, 2) и (5, 1, 2, 4, 3) - последовательные множества, а (2, 5, 3) - нет.

Входные данные

Первая строка содержит одно целое число N ( 1 ≤ N ≤ 10000 ). Вторая строка содержит N целых чисел V i - типы шуток, рассказываемые i -м человеком ( 1 ≤ V i ≤ 100 ). Каждая из следующих N - 1 строк содержит два целых числа A и B ( 1 ≤ A , B N ), обозначающих что сотрудник с номером A является прямым начальником сотрудника с номером B .

Выходные данные

Выведите единственное число - количество возможных наборов типов шуток на вечеринке.

Примеры
Входные данные
4
2 1 3 4
1 2
1 3
3 4
Выходные данные
6
Входные данные
4
3 4 5 6
1 2
1 3
2 4
Выходные данные
3
Входные данные
6
5 3 6 4 2 1
1 2
1 3
1 4
2 5
5 6
Выходные данные
10
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
32 megabytes

Лука - торговец картинами. У него есть N клиентов, каждому из которых он продает произведения искусства. Каждый клиент может купить либо цветные картины, либо черно-белые, но не те и другие вместе. При этом клиент под номером i готов купить не более a i цветных картин и не более b i черно-белых картин. При этом каждый клиент хочет купить хотя бы одну картину.

У Луки практически неограниченный запас картин, поэтому запросы клиентов не являются для него проблемой. Однако, Лука не любит продавать черно-белые картины, и если окажется, что меньше, чем C людей купили цветные картины, он очень огорчится.

В силу нестабильной экономической ситуации в стране клиенты постоянно изменяют свои запросы, иными словами количество цветных и черно-белых картин, которые они готовы купить. Из-за этого Лука постоянно задается вопросом: "Сколько у меня есть вариантов, как продать клиентам картины, чтобы хотя бы C человек купили цветные картины?". Помогите Луке и защитите его от излишнего беспокойства.

Входные данные

Первая строка содержит два целых числа N и C ( 1 ≤ N ≤ 105, 1 ≤ C ≤ 20 ). Вторая строка содержит N целых чисел a i ( 1 ≤ a i ≤ 109 ). Третья строка содержит N целых чисел b i ( 1 ≤ b i ≤ 109 ). Четвертая строка содержит одно целое число Q ( 1 ≤ Q ≤ 105 ) - количество изменений требований клиентов. Каждая из следующих Q строк содержит три числа: номер клиента, меняющего требования P ( 1 ≤ P N ), новое максимальное количество цветных картин, которое он готов купить A p ( 1 ≤ A p ≤ 109 ) и новое максимальное количество черно-белых картин, которое он готов купить B p ( 1 ≤ B p ≤ 109 ).

Выходные данные

Выведите Q строк, где в q -й строке записано единственное число - количество вариантов продать картины клиентам, чтобы хотя бы C человек купили цветные картины, по модулю 10007 после первых q изменений требований.

Разбалловка для личной олимпиады

Тесты 4-6 — числа n, q не превосходят 1000. Группа тестов оценивается в 30 баллов.

Тесты 7-13 — Полные ограничения. Группа тестов оценивается в 70 баллов.

Примеры
Входные данные
2 2
1 1
1 1
1
1 1 1
Выходные данные
1
Входные данные
2 2
1 2
2 3
2
1 2 2
2 2 2
Выходные данные
4
4
Входные данные
4 2
1 2 3 4
1 2 3 4
1
4 1 1
Выходные данные
66
#113541
  
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
128 megabytes

Есть N шариков, висящих в воздухе вдоль одной линии слева направо. Девочка Перика хочет поиграть со стрелами и проверить свои навыки охотника. Она стреляет в линию шариков слева, запуская стрелу на некоторой высот. Стрела летит вдоль линии слева направо до тех пор, пока не попадет в шарик. В тот момент, когда она его касается, шарик лопается, а стрела летит дальше на высоте, уменьшенной на 1. То есть, если стрела летела на высоте H , то после столкновения она будет лететь на высоте H - 1 . Цель нашего героя - сбить все шарики, использовав минимальное количество стрел.

Входные данные

В первой строке записано одно натуральное число N ( 1 ≤ N ≤ 1000000 ). Во второй строке записано N натуральных чисел H i . Каждое число H i ( 1 ≤ H i ≤ 1000000 ) обозначает высоту, на которой висит i-й шарик в порядке слева направо.

Выходные данные

В единственной строке выведите одно целое число - минимальное количество выстрелов, необходимое Перике для того чтобы сбить все шарики.

Примеры
Входные данные
5
2 1 5 4 3
Выходные данные
2
Входные данные
5
1 2 3 4 5
Выходные данные
5
Входные данные
5
4 5 2 1 4
Выходные данные
3
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Вы наверняка слышали легенду о Короле Артуре и Рыцарях Круглого Стола. Практически все версии этой истории указывают на то, что круглость Круглого Стола тесно связана с верой Артура в равенство среди рыцарей. Это ложь! На самом деле выбор Артура касательно формы стола вызван его детской травмой.

В реальности Артур был принужден убирать и мыть квадратные столы с юного возраста после того как на них играли в бирюльки. После соревнований по этой игре обычно на столе остается множество палочек, не касающихся друг друга. В духе соревнования, организаторы установили свод строгих правил для уборщиков. Точнее, палочки со стола должны быть убраны одна за другой путем их сдвига к ближайшему к уборщику краю стола. Они не должны вращаться и касаться других палочек в процессе перемещения.

В этой задаче представим стол на координатной плоскости как квадрат с противоположными вершинами в точках (0, 0) и (10000, 10000), где палочкам соответствуют прямые отрезки, лежащие внутри квадрата. Предположим, что Артур сидит у края стола, прилежащего к оси X. Тогда уборка палочек со стола сводится к передвижению их к оси X, покуда они не упадут со стола. Ваша задача - определить порядок уборки палочек со стола, который соответствует условиям из предыдущего абзаца.

Входные данные

Первая строка содержит единственное целое число N ( 1 ≤ N ≤ 5000 ) - количество палочек на столе. Каждая из следующих N строк содержит 4 целых числа x 1 , y 1 , x 2 , y 2 ( 0 ≤ x 1 , y 1 , x 2 , y 2 ≤ 10000 ), обозначающих крайние точки палочек.

Выходные данные

В единственной строке выведите N целых чисел - номера палочек в том порядке, в котором они должны быть убраны со стола. Если существует несколько решений, выведите любое из них.

Примеры
Входные данные
4
1 3 2 2
1 1 3 2
2 4 7 3
3 3 5 3
Выходные данные
2 4 1 3 
Входные данные
4
0 0 1 1
1 2 0 3
2 2 3 3
4 0 3 1
Выходные данные
4 3 1 2 
Входные данные
3
4 6 5 5
2 1 15 1
3 2 8 7
Выходные данные
2 3 1 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Известно, что в солнечной системе есть 8 планет и один планетоид. Мало кто знает, что ещё есть секретная планета, населенная медведями. Именно туда ассоциация Savez отправляет бравого генерала Хенрика для изучения медведей. Выяснилось, что медведи умеют телепортироваться. Расчётливый генерал Хедрик решил завербовать их в свою армию.

У одного медведя есть N строк (обозначим i -ю из них x i ). Исследования показывают, что количество раз, которое может телепортироваться медведь равно длине наибольшей подпоследовательности этих строк, удовлетворяющей такому правилу: строки x i и x j ( i < j ) могут принадлежать одной такой последовательности, если x i является и префиксом, и суффиксом x j .

Помогите уставшему от долгого полёта генералу Хендрику определить, сколько телепортаций сможет сделать данный медведь.

Входные данные

В первой строке содержится одно целое число N – количество строк, которые есть у медведя. В последующих N строках содержатся сами эти строки. Входной файл содержит не более двух миллионов символов.

Выходные данные

Выведите одно число – ответ на вопрос любопытного генерала Хендрика.

Примечание

В первом примере наибольшая последовательность A -> AA -> AAA В третьем примере наибольшая последовательность A -> A -> A или B -> B -> B

Примеры
Входные данные
5
A
B
AA
BBB
AAA
Выходные данные
3
Входные данные
5
A
ABA
BBB
ABABA
AAAAAB
Выходные данные
3
Входные данные
6
A
B
A
B
A
B
Выходные данные
3

Страница: 1 2 3 4 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест