Обход в глубину(100 задач)
Способы задания графа(54 задач)
Минимальный каркас(12 задач)
Потоки(21 задач)
Паросочетания(17 задач)
Эйлеров цикл(9 задач)
Деревья(16 задач)
Рассмотрим расписание движения электричек на некоторой железнодорожной линии. Нас будут интересовать только электрички, идущие в одном направлении.
Каждая электричка отправляется с некоторой станции и следует до некоторой другой станции со всеми остановками. При этом средняя маршрутная скорость у каждой электрички своя (будем считать, что весь маршрут электричка проходит с этой скоростью, временем стоянки на станциях пренебрежем). Поскольку на участке только один путь в данном направлении — электрички в процессе следования друг друга не обгоняют.
Требуется выпустить книжку-расписание электричек. Обычно такая книжка представляет собой таблицу, где в первом столбце перечислены все станции, а каждый следующий столбец соответствует электричке: если электричка проходит через станцию, то в соответствующей клетке указывается время прохождения этой электрички через эту станцию, и прочерк, если электричка через эту станцию не проходит.
Естественно, что в книжке-расписании нужно расположить электрички так, чтобы они были указаны в хронологическом порядке. А именно, если две электрички имеют хотя бы одну общую станцию (даже если она является начальной станцией для одной, и конечной — для другой электрички), электрички в расписании должны идти в том порядке, в каком они проходят через эту станцию (поскольку электрички не обгоняют друг друга, то это же будет справедливо для всех общих станций этих двух электричек). Если же электрички не имеют ни одной общей станции, то они могут быть указаны в любом порядке.
По данному расписанию движения электричек определите порядок, в котором электрички должны идти в книжке—расписании.
Сначала вводится целое число N (1 ≤ N ≤ 1000) — количество электричек. Далее идёт описание электричек: каждая электричка задается четырьмя числами Ai, Bi, Ci, Di (0 ≤ Ai < Bi ≤ 106, 1 ≤ Ci ≤ 100, 0 ≤ Di ≤ 10000), которые обозначают, что данная электричка отправляется со станции «Ai-й километр» и следует до станции «Bi-й километр». Электричка отправляется с начальной станции в момент Ci. Один километр электричка проезжает за Di секунд.
Гарантируется, что расписание можно составить корректно, в частности, никакая электричка не обгоняет другую.
Выведите последовательность из N номеров от 1 до N – номера электричек в том порядке, в котором они должны идти в книжке-расписании. Если возможных ответов несколько, выведите любой.
Комментарий к примеру тестов
Ответ 2 3 1 также будет верным.
3 1 10 3 4 3 5 3 4 10 11 10 1
3 2 1
В начале XIX века еще не было самолетов, поездов и автомобилей, поэтому все междугородние зимние поездки совершались на санях. Как известно, с дорогами в России тогда было даже больше проблем, чем сейчас, а именно на N существовавших тогда городов имелась ровно N-1 дорога, каждая из которых соединяла ровно два города. К счастью, из каждого города можно было добраться в любой другой (возможно, через некоторые промежуточные города). В каждом городе имелась почтовая станция (или, как ее называют, «ям»), на которой можно было пересесть в другие сани. При этом ямщики могли долго запрягать (для каждого из городов известно время, которое ямщики в этом городе тратят на подготовку саней к поездке) и быстро ехать (также для каждого города известна скорость, с которой ездят ямщики из него). Можно считать, что количество ямщиков в каждом городе не ограничено.
Если бы олимпиада проводилась 200 лет назад, то путь участников занимал бы гораздо большее время, чем сейчас. Допустим, из каждого города в Москву выезжает участник олимпиады и хочет добраться до Москвы за наименьшее время (не обязательно по кратчайшему пути: он может заезжать в любые города, через один и тот же город можно проезжать несколько раз). Сначала он едет на ямщике своего города. Приехав в любой город, он может либо сразу ехать дальше, либо пересесть. В первом случае он едет с той же скоростью, с какой ехал раньше. Решив сменить ямщика, он сначала ждет, пока ямщик подготовит сани, и только потом едет с ним (естественно, с той скоростью, с которой ездит этот ямщик). В пути можно делать сколько угодно пересадок.
Жюри стало интересно, какое время необходимо, чтобы все участники олимпиады доехали из своего города в Москву 200 лет назад. Все участники выезжают из своих городов одновременно.
В первой строке входного файла дано натуральное число N, не превышающее 2000 — количество городов, соединенных дорогами. Город с номером 1 является столицей.
Следующие N строк содержат по два целых числа: Ti и Vi — время подготовки саней в городе i, выраженное в часах, и скорость, с которой ездят ямщики из города i, в километрах в час (0 ≤ Ti ≤ 100, 1 ≤ Vi ≤ 100).
Следующие N–1 строк содержат описания дорог того времени. Каждое описание состоит из трех чисел Aj, Bj и Sj, где Aj и Bj — номера соединенных городов, а Sj — расстояние между ними в километрах (1 ≤ Aj ≤ N, 1 ≤ Bj ≤ N, Aj ≠ Bj, 1 ≤ Sj ≤ 10000). Все дороги двусторонние, то есть если из A можно проехать в B, то из B можно проехать в A. Гарантируется, что из всех городов можно добраться в столицу.
Сначала выведите одно вещественное число — время в часах, в которое в Москву приедет последний участник.
Далее выведите путь участника, который приедет самым последним (если таких участников несколько, выведите путь любого из них). Выведите город, из которого этот участник выехал первоначально, и перечислите в порядке посещения те города, в которых он делал пересадки. Последовательность должна заканчиваться столицей.
При проверке ответ будет засчитан, если из трех величин «время путешествия по выведенному пути», «выведенное время» и «правильный ответ» каждые две отличаются менее чем на 0.0001.
Комментарий к примеру тестов
1. Участник из города 1 уже находится на своем месте и тратит на дорогу 0 часов. Участник из города 2 ждет 10 часов ямщика в своем городе, а затем проезжает 300 км от города 2 до города 1 за 10 часов, т.е. тратит на дорогу 20 часов. Участник из города номер 3 ждет ямщика 5 часов, а затем доезжает до города 1 за 10 часов, т.е. тратит на дорогу 15 часов. Участник из города 4 может доехать до города 1 с ямщиком из города 4 за 1 + 40 = 41 час или доехать до города номер 2 за 1 + 10 = 11 часов, прождать там 10 и доехать до столицы за 10 часов. Таким образом, он может добраться до города 1 минимум за 31 час. Это и есть самое большое время и ответ к задаче.
2. Участнику из города 2 выгоднее добраться сначала до третьего города, где ездят быстрее, а потом поехать в столицу, не делая пересадки в своём городе.
4 1 1 10 30 5 40 1 10 1 2 300 1 3 400 2 4 100
31.0000000000 4 2 1
3 1 1 0 10 0 55 1 2 100 2 3 10
3.0000000000 2 3 1