Бинарный поиск(101 задач)
Порядковые статистики(3 задач)
Поиск подстроки в строке(1 задач)
Тернарный поиск(8 задач)
"Два указателя"(18 задач)
Развлекательный телеканал транслирует шоу «Колесо Фортуны». В процессе игры участники шоу крутят большое колесо, разделенное на сектора. В каждом секторе этого колеса записано число. После того как колесо останавливается, специальная стрелка указывает на один из секторов. Число в этом секторе определяет выигрыш игрока.
Юный участник шоу заметил, что колесо в процессе вращения замедляется из-за того, что стрелка задевает за выступы на колесе, находящиеся между секторами. Если колесо вращается с угловой скоростью \(v\) градусов в секунду, и стрелка, переходя из сектора \(X\) к следующему сектору, задевает за очередной выступ, то текущая угловая скорость движения колеса уменьшается на \(k\) градусов в секунду. При этом если \(v \le k\), то колесо не может преодолеть препятствие и останавливается. Стрелка в этом случае будет указывать на сектор \(X\).
Юный участник шоу собирается вращать колесо. Зная порядок секторов на колесе, он хочет заставить колесо вращаться с такой начальной скоростью, чтобы после остановки колеса стрелка указала на как можно большее число. Колесо можно вращать в любом направлении и придавать ему начальную угловую скорость от \(a\) до \(b\) градусов в секунду.
Требуется написать программу, которая по заданному расположению чисел в секторах, минимальной и максимальной начальной угловой скорости вращения колеса и величине замедления колеса при переходе через границу секторов вычисляет максимальный выигрыш.
Первая строка входного файла содержит целое число \(n\) — количество секторов колеса (\(3 \le n \le 100\)).
Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает \(1000\) — числа, записанные в секторах колеса. Числа приведены в порядке следования секторов по часовой стрелке. Изначально стрелка указывает на первое число.
Третья строка содержит три целых числа: \(a\), \(b\) и \(k\) (\(1 \le a \le b \le 10^9\), \(1 \le k \le 10^9\)).
В выходном файле должно содержаться одно целое число — максимальный выигрыш.
В первом примере возможны следующие варианты: можно придать начальную скорость колесу равную 3 или 4, что приведет к тому, что стрелка преодолеет одну границу между секторами, или придать начальную скорость равную 5, что позволит стрелке преодолеть 2 границы между секторами. В первом варианте, если закрутить колесо в одну сторону, то выигрыш получится равным 2, а если закрутить его в противоположную сторону, то — 5. Во втором варианте, если закрутить колесо в одну сторону, то выигрыш будет равным 3, а если в другую сторону, то — 4.
Во втором примере возможна только одна начальная скорость вращения колеса — 15 градусов в секунду. В этом случае при вращении колеса стрелка преодолеет семь границ между секторами. Тогда если его закрутить в одном направлении, то выигрыш составит 4, а если в противоположном направлении, то — 3.
Наконец, в третьем примере оптимальная начальная скорость вращения колеса равна 2 градусам в секунду. В этом случае стрелка вообще не сможет преодолеть границу между секторами, и выигрыш будет равен 5.
Правильные решения для тестов, в которых \(1 \le a \le b \le 1000\), будут оцениваться из 50 баллов.
5 1 2 3 4 5 3 5 2
5
5 1 2 3 4 5 15 15 2
4
5 5 4 3 2 1 2 5 2
5
Победитель школьного этапа олимпиады по информатике нашел дома в старых бумагах результаты чемпионата страны по стрельбе из лука, в котором участвовал его папа. К сожалению, листок с результатами сильно пострадал от времени, и разобрать фамилии участников было невозможно. Остались только набранные каждым участником очки, причем расположились они в том порядке, в котором участники чемпионата выполняли стрельбу.
Расспросив папу, школьник выяснил, что количество очков, которое набрал папа, заканчивается на 5, один из победителей чемпионата стрелял раньше, а папин друг, который стрелял сразу после папы, набрал меньше очков. Теперь он заинтересовался, какое самое высокое место мог занять его папа на том чемпионате.
Будем считать, что участник соревнования занял \(k\)-е место, если ровно \((k - 1)\) участников чемпионата набрали строго больше очков, чем он. При этом победителями считались все участники чемпионата, занявшие первое место.
Требуется написать программу, которая по заданным результатам чемпионата определяет, какое самое высокое место на чемпионате мог занять папа победителя школьного этапа олимпиады по информатике.
Первая строка входного файла содержит целое число \(n\) — количество участников чемпионата страны по стрельбе (\(3 \le n \le 10^5\)).
Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает 1000, — очки участников чемпионата, приведенные в том порядке, в котором они выполняли стрельбу.
В выходном файле должно содержаться одно целое число — самое высокое место, которое мог занять папа школьника. Если не существует ни одного участника чемпионата, который удовлетворяет, описанным выше условиям, выведите в выходной файл число 0.
Правильные решения для тестов, в которых \(1 \le n \le 1000\), оцениваются из 50 баллов.
7 10 20 15 10 30 5 1
6
3 15 15 10
1
Министерство дорожного транспорта решило построить себе новый офис. Поскольку министр регулярно выезжает с инспекцией наиболее важных трасс, было решено, что офис министерства не должен располагаться слишком далеко от них.
Наиболее важные трассы представляют собой прямые на плоскости. Министерство хочет выбрать такое расположение для своего офиса, чтобы максимум из расстояний от офиса до трасс был как можно меньше.
Требуется написать программу, которая по заданному расположению наиболее важных трасс определяет оптимальное расположение дома для офиса министерства дорожного транспорта.
Первая строка входного файла содержит одно целое число \(n\) — количество наиболее важных трасс (\(1 \le n \le 10^4\)).
Последующие \(n\) строк описывают трассы. Каждая трасса описывается четырьмя целыми числами \(x_1\), \(y_1\), \(x_2\) и \(y_2\) и представляет собой прямую, проходящую через точки \((x_1, y_1)\) и \((x_2, y_2)\). Координаты заданных точек не превышают по модулю \(10^4\). Точки \((x_1, y_1)\) и \((x_2, y_2)\) ни для какой прямой не совпадают.
Выходной файл должен содержать два разделенных пробелом вещественных числа: координаты точки, в которой следует построить офис министерства дорожного транспорта. Координаты по модулю не должны превышать \(10^9\), гарантируется, что хотя бы один такой ответ существует. Если оптимальных ответов несколько, необходимо выведите любой из них.
Ответ должен иметь абсолютную или относительную погрешность не более \(10^{-6}\), что означает следующее. Пусть максимальное расстояние от выведенной точки до некоторой трассы равно \(x\), а в правильном ответе оно равно \(y\). Ответ будет засчитан, если значение выражения \(|x - y| / max(1, |y|)\) не превышает \(10^{-6}\).
Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны, оцениваются из 20 баллов.
Правильные решения для тестов, в которых \(n \le 100\) и все прямые параллельны осям координат, оцениваются из 20 баллов.
Правильные решения для тестов, в которых \(n \le 100\), оцениваются из 70 баллов (в эти баллы включаются также по 20 баллов за случаи, описанные в предыдущих двух абзацах).
4 0 0 0 1 0 0 1 0 1 1 2 1 1 1 1 2
0.5000000004656613 0.4999999995343387
7 376 -9811 376 -4207 6930 -3493 6930 -8337 1963 -251 1963 -5008 -1055 9990 -684 9990 3775 -348 3775 1336 7706 -2550 7706 -8412 -9589 8339 -4875 8339
4040.9996151750674 12003.999615175067