Страница: 1 Отображать по:
ограничение по времени на тест
5.0 second;
ограничение по памяти на тест
256 megabytes

Задана информация об N партиях - количестве голосующих за них и размер взятки, который необходимо дать партии, чтобы она делала что нужно, если победит. Изменение результата голосования одного человека стоит 1 уе. Требуется за наименьшее количество денег подкупить партию и людей так, чтобы она победила.

В одной демократической стране приближаются парламентские выборы. Выборы проходят по следующей схеме: каждый житель страны, достигший восемнадцатилетнего возраста, отдает свой голос за одну из политических партий. После этого партия, которая набрала максимальное количество голосов, считается победившей на выборах и формирует правительство. Если несколько партий набрали одинаковое максимальное количество голосов, то они должны сформировать коалиционное правительство, что обычно приводит к длительным переговорам.

Один бизнесмен решил выгодно вложить свои средства и собрался поддержать на выборах некоторые партии. В результате поддержки он планирует добиться победы одной из этих партий, которая затем сформирует правительство, которое будет действовать в его интересах. При этом возможность формирования коалиционного правительства его не устраивает, поэтому он планирует добиться строгой победы одной из партий.

Чтобы повлиять на исход выборов, бизнесмен собирается выделить деньги на агитационную работу среди жителей страны. Исследование рынка показало, что для того, чтобы один житель сменил свои политические воззрения, требуется потратить одну условную единицу. Кроме того, чтобы i-я партия в случае победы сформировала правительство, которое будет действовать в интересах бизнесмена, необходимо дать лидеру этой партии взятку в размере pi условных единиц. При этом некоторые партии оказались идеологически устойчивыми и не согласны на сотрудничество с бизнесменом ни за какие деньги.

По результатам последних опросов известно, сколько граждан планируют проголосовать за каждую партию перед началом агитационной компании. Помогите бизнесмену выбрать, какую партию следует подкупить, и какое количество граждан придется убедить сменить свои политические воззрения, чтобы выбранная партия победила, учитывая, что бизнесмен хочет потратить на всю операцию минимальное количество денег.

Входные данные

В первой строке вводится целое число n – количество партий ( 1<= n <=105). Следующие n строк описывают партии. Каждая из этих строк содержит по два целых числа: vi – количество жителей, которые собираются проголосовать за эту партию перед началом агитационной компании, и pi – взятка, которую необходимо дать лидеру партии для того, чтобы сформированное ей в случае победы правительство действовало в интересах бизнесмена ( 1<=vi<=106, 1<=pi<=106 или pi = - 1). Если партия является идеологически устойчивой, то pi равно -1. Гарантируется, что хотя бы одно pi не равно -1.

Выходные данные

В первой строке  выведите минимальную сумму, которую придется потратить бизнесмену. Во второй строке выведите номер партии, лидеру которой следует дать взятку. В третьей строке выведите n целых чисел – количество голосов, которые будут отданы за каждую из партий после осуществления операции. Если оптимальных решений несколько, выведите любое.

Примеры
Входные данные
3
7 -1
2 8
1 2
Выходные данные
6
3
3 2 5 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Учительница задала Пете домашнее задание — в заданном тексте расставить ударения в словах, после чего поручила Васе проверить это домашнее задание. Вася очень плохо знаком с данной темой, поэтому он нашел словарь, в котором указано, как ставятся ударения в словах. К сожалению, в этом словаре присутствуют не все слова. Вася решил, что в словах, которых нет в словаре, он будет считать, что Петя поставил ударения правильно, если в этом слове Петей поставлено ровно одно ударение.

Оказалось, что в некоторых словах ударение может быть поставлено больше, чем одним способом. Вася решил, что в этом случае если то, как Петя поставил ударение, соответствует одному из приведенных в словаре вариантов, он будет засчитывать это как правильную расстановку ударения, а если не соответствует, то как ошибку.

Вам дан словарь, которым пользовался Вася и домашнее задание, сданное Петей. Ваша задача — определить количество ошибок, которое в этом задании насчитает Вася.

Входные данные

Вводится сначала число N — количество слов в словаре (0≤N≤20000).

Далее идет N строк со словами из словаря. Каждое слово состоит не более чем из 30 символов. Все слова состоят из маленьких и заглавных латинских букв. В каждом слове заглавная ровно одна буква — та, на которую попадает ударение. Слова в словаре расположены в алфавитном порядке. Если есть несколько возможностей расстановки ударения в одном и том же слове, то эти варианты в словаре идут в произвольном порядке.

Далее идет упражнение, выполненное Петей. Упражнение представляет собой строку текста, суммарным объемом не более 300000 символов. Строка состоит из слов, которые разделяются между собой ровно одним пробелом. Длина каждого слова не превышает 30 символов. Все слова состоят из маленьких и заглавных латинских букв (заглавными обозначены те буквы, над которыми Петя поставил ударение). Петя мог по ошибке в каком-то слове поставить более одного ударения или не поставить ударения вовсе.

Выходные данные

Выведите количество ошибок в Петином тексте, которые найдет Вася.


Примеры

Входные данные

Выходные данные

Комментарии

4

cAnnot

cannOt

fOund

pAge

thE pAge cAnnot be fouNd

2

В слове cannot, согласно словарю возможно два варианта расстановки ударения. Эти варианты в словаре могут быть перечислены в любом порядке (т.е. как сначала cAnnot, а потом cannOt, так и наоборот).

Две ошибки, совершенные Петей — это слова be (ударение вообще не поставлено) и fouNd (ударение поставлено неверно). Слово thE отсутствует в словаре, но поскольку в нем Петя поставил ровно одно ударение, признается верным.

4

cAnnot

cannOt

fOund

pAge

The PAGE cannot be found

4

Неверно расставлены ударения во всех словах, кроме The (оно отсутствует в словаре, в нем поставлено ровно одно ударение). В остальных словах либо ударные все буквы (в слове PAGE), либо не поставлено ни одного ударения.

Дано N упорядоченных по неубыванию последовательностей целых чисел (т.е. каждый следующий элемент больше либо равен предыдущему), в каждой из последовательностей ровно L элементов. Для каждых двух последовательностей выполняют следующую операцию: объединяют их элементы (в объединенной последовательности каждое число будет идти столько раз, сколько раз оно встречалось суммарно в объединяемых последовательностях), упорядочивают их по неубыванию и смотрят, какой элемент в этой последовательности из 2L элементов окажется на месте номер L (этот элемент называют левой медианой).

Напишите программу, которая для каждой пары последовательностей выведет левую медиану их объединения.

Входные данные

Сначала вводятся числа N и L (2≤N≤200, 1≤L≤50000). В следующих N строках задаются параметры, определяющие последовательности.

Каждая последовательность определяется пятью целочисленными параметрами: x1, d1, a, c, m. Элементы последовательности вычисляются по следующим формулам: x1 нам задано, а для всех i от 2 до L: xi = xi–1+di–1. Последовательность di определяется следующим образом: d1 нам задано, а для i≥2 di=((a*di–1+c) mod m), где mod – операция получения остатка от деления (a*di–1+c) на m.

Для всех последовательностей выполнены следующие ограничения: 1≤m≤40000, 0≤a<m, 0≤c<m, 0≤d1<m. Гарантируется, что все члены всех последовательностей по модулю не превышают 109.

Выходные данные

В первой строке выведите медиану объединения 1-й и 2-й последовательностей, во второй строке — объединения 1-й и 3-й, и так далее, в (N‑1)-ой строке — объединения 1-й и N-ой последовательностей, далее медиану объединения 2-й и 3-й, 2-й и 4-й, и т.д. до 2-й и N-ой, затем 3-й и 4-й и так далее. В последней строке должна быть выведена медиана объединения (N–1)-й и N-ой последовательностей.

Пример

Входные данные

Выходные данные

Комментарии

3 6

1 3 1 0 5

0 2 1 1 100

1 6 8 5 11

7

10

9

Последовательности, объединения которых мы считаем, таковы:

1 4 7 10 13 16

0 2 5 9 14 20

1 7 16 16 21 22

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
На круглом торте расположены свечки, заданные двумя координатами. Разрезы торта заданы уравнениями прямых. Требуется определить, есть ли на каком-либо кусочке торта более одной свечки.

Мише исполнилось \(n\) лет. Праздничный торт, испеченный по этому случаю, имеет форму круга радиуса \(r\) с центром в начале координат. На торте стоят \(n\) свечек. Мишина мама разделила торт на части, сделав \(m\) прямолинейных разрезов. Каждый гость взял один из получившихся кусков.

Миша хочет узнать, не досталось ли кому-нибудь из его гостей более одной свечки. Помогите ему это выяснить.

Входные данные

Первая строка входного файла содержит целые числа \(n\), \(m\) и \(r\) (1 ≤ \(n\) ≤ 10000, 0 ≤ \(m\) ≤ 1000, 1 ≤ \(r\) ≤ 2000).

Следующие n строк содержат пары целых чисел \(x_i\), \(y_i\) – координаты точек, где расположены свечки. Гарантируется, что эти точки лежат внутри круга, размерами свечек следует пренебречь. Никакие две свечки не совпадают.

Последние \(m\) строк содержат описание разрезов – тройки целых чисел \(a_i\), \(b_i\), \(c_i\). Такая тройка соответствует разрезу, который задается уравнением \(a_i\) \(x\) + \(b_i\) \(y\) + \(c_i\) = 0. Ни один разрез не проходит через свечку. Никакие два разреза не совпадают. Числа ai, bi, ci не превышают 10000 по модулю.

Выходные данные

Если одному из гостей досталось более одной свечки, выведите в выходной файл слово «YES», иначе выведите слово «NO».

Примеры
Входные данные
3 2 3
2 2
1 -1
-2 0
2 -1 0
0 1 -1
Выходные данные
NO
Входные данные
3 2 3
2 2
1 -1
-2 0
1 1 -1
0 1 -1
Выходные данные
YES
Входные данные
4 2 10
1 1
1 -1
-1 1
-1 -1
0 1 0
1 0 0
Выходные данные
NO
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
256 megabytes

Однажды Петя узнал очень важную последовательность из \(n\) чисел. Тщательно проанализировав ее, он обнаружил, что она является арифметической прогрессией. Чтобы не забыть он записал ее элементы на \(n\) карточках.

Но затем случилась неприятность. Не зная всю важность этой последовательности, его брат Вовочка взял еще \(n\) карточек и написал на них произвольные числа, а потом перемешал все \(2n\) карточек.

Теперь Петя хочет восстановить исходную последовательность по этим карточкам. К сожалению возможно, что это можно сделать несколькими способами, но Петю устроят любые \(n\) чисел, образующие арифметическую прогрессию.

Петя не может сделать это вручную, поэтому обратился к вам за помощью.

Напомним что последовательность \(a_1, a_2, \ldots, a_n\) называется арифметической прогрессией, если \(a_i = a_{i-1} + d\) для всех \(i\) от 2 до \(n\) и некоторого \(d\). Число \(d\) называется разностью арифметической прогрессии.

Входные данные

В первой строке входного файла находится целое число \(n\) (\(1 \le n \le 100\,000\)). В следующей строке находится \(2n\) целых чисел по модулю не превосходящих \(10^9\) — числа, написанные на карточках, перечисленные в произвольном порядке. Гарантируется, что можно выбрать \(n\) из них так, чтобы они образовывали арифметическую прогрессию.

Выходные данные

В первой строке выходного файла выведите \(a_1\) и \(d\) — первый элемент и разность найденной арифметической прогрессии. Если \(d = 0\), число \(a_1\) должно встречаться среди заданных чисел \(n\) раз.

Если существует несколько решений, выведите любое.


Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест