Страница: 1 Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Сегодня на уроке физики рассказывали удивительные вещи. Придя домой, Витя решил проверить слова учителя о том, что если взять два одинаковых сосуда, соединенных тонкой трубкой на уровне основания, то уровень жидкости при любом ее количестве также будет одинаковым для обоих сосудов.

Способ убедиться в правильности утверждения Витя избрал довольно оригинальный. Он взял аквариум с основанием длиной N и шириной 1, очень высокими стенками, и поставил N –1 перегородку параллельно узкой боковой стенке аквариума, тем самым, разделив аквариум на N одинаковых отсеков. Каждая перегородка имеет ширину 1 и очень большую высоту. Толщиной перегородки можно пренебречь. В каждой из перегородок есть точечное отверстие на высоте Hi, диаметром которого также можно пренебречь. После всех этих приготовлений Витя медленно наливает в первый отсек (между стенкой и 1ой перегородкой) C литров воды. В часть аквариума размером 1x1x1 вмещается ровно один литр воды. Так как стенки и перегородки в аквариуме были очень высокими, то через край вода не переливалась. После установления стационарного состояния он замерил уровень жидкости в каждом из N сосудов.

Теперь он хочет убедиться, что его экспериментальные данные не опровергают законы, рассказанные на уроке. Он обратился к вам с просьбой выяснить, какой должна быть высота жидкости в каждом из сосудов с теоретической точки зрения.

Рассмотрим подробно случай N = 3. Пусть сначала H1 < H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вода станет поступать во второй отсек до тех пор, пока уровни в обоих отсеках не сравняются (или уровень воды в первом отсеке окажется равным H1, тогда во втором отсеке он будет на уровне СH1). Далее уровень жидкости в первых двух частях будет увеличиваться равномерно (или не будет меняться). Как только вода достигнет второго отверстия, вся она будет поступать в третий отсек, опять же до тех пор, пока уровни жидкости во всех трех частях не сравняются или вода в первых двух отсеках достигнет уровня H2. После этого, если воды оказалось достаточно, весь аквариум будет заполняться равномерно.

Пусть теперь H1 > H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вся вода станет поступать во второй отсек. Если после этого уровень во втором отсеке сравняется с уровнем второго отверстия, то вода станет выливаться в третий до тех пор, пока высоты жидкостей во втором и третьем отсеках не станут равными. Далее уровень воды в них будет равномерно увеличиваться, пока не достигнет первого отверстия. После этого весь аквариум будет заполняться равномерно.

Входные данные

В первой строке записаны целые N и C (1 ≤ N ≤ 100000, 0 ≤ C ≤ 2*109). В следующих N –1 строках содержится по одному целому числу Hi (0 ≤ Hi ≤ 2*109), обозначающему высоту отверстия в i-й перегородке.

Выходные данные

Выведите N чисел, каждое на новой строке, с точностью до шести знаков после десятичной точки —уровень жидкости в 1, 2, ..., N отсеке соответственно.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 100. Оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N ≤ 10000. Оценивается в 30 баллов.

Примеры
Входные данные
4 4
3
2
1
Выходные данные
3.00000000000000000000
1.00000000000000000000
0.00000000000000000000
0.00000000000000000000
Входные данные
4 10
1
2
3
Выходные данные
3.00000000000000000000
3.00000000000000000000
3.00000000000000000000
0.99999999999999911000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Знаменитый художник Вася только что закончил работу над своим новым шедевром и хочет знать, сколько он сможет получить за свой труд.

Картина представляет собой прямоугольник N на M сантиметров, разделенный на маленькие квадратики 1 на 1 сантиметр со сторонами, параллельными сторонам картины. Для достижения гармонии каждый из этих квадратиков Вася покрасил одним из 26 особых цветов, обозначаемых маленькими латинскими буквами.

Стоимость картины в точности равна количеству «симпатичных» частей в ней. Частью картины называется любой прямоугольник, который может быть вырезан из нее по границам квадратиков. Часть называется «симпатичной», если при выполнении симметрии относительно ее центра получается прямоугольник, раскрашенный также, как и исходная часть. Например, в картине, раскрашенной так:

abc
acb

симпатичными являются все части, состоящие из одного квадратика (их 6), а также части

bc и a

cb и a

Напишите программу, которая по информации о шедевре Васи определит его стоимость.

Входные данные

В первой строке содержатся два числа N и M (1 ≤ N, M ≤ 100). В следующих N строках идут строки, состоящие из M маленьких латинских символов. Символ в i-й строке j-м столбце определяет цвет соответствующего квадратика картины.

Выходные данные

Выведите стоимость шедевра — количество частей, симметричных относительно своего центра.

Комментарии к примерам тестов

Этот пример разобран в условии

Симпатичными являются шесть частей 1x1, одна часть 1x2 и сама картина.

Частичные ограничения

Первая группа состоит из тестов, в которых N, M15. Данная группа оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N, M ≤ 50. Данная группа оценивается в 30 баллов.

Примеры
Входные данные
2 3
abc
acb
Выходные данные
8
Входные данные
3 2
ab
cc
ba
Выходные данные
8
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Мосгортранс в честь дня своего рождения решил провести соревнования, и, по аналогии с «Бегущим городом» назвать их «Ездящий город».

Участник соревнований получает маршрутный лист, где указано, какие контрольные пункты и в каком порядке он должен посетить (в каждом пункте участник должен отметиться). При этом участник должен отмечаться в пунктах строго в указанном порядке. Какие-то пункты может потребоваться посетить несколько раз.

Специально по случаю соревнования между контрольными пунктами будут ходить автобусы. Перемещаться от контрольного пункта к контрольному пункту разрешается только на автобусах. При этом можно пользоваться как прямым рейсом, соединяющим контрольные пункты (если он существует), так и добираться с пересадкой через другие контрольные пункты (если это оказывается быстрее или если прямого маршрута вовсе нет), при этом в пересадочных пунктах участник не отмечается.

Известен маршрутный лист участника и расписание движения автобусов. Требуется определить минимальное время, которое понадобится участнику на прохождение маршрута.

Входные данные

Сначала вводится число \(N\) — общее количество контрольных пунктов (2≤\(N\)≤10000).

Далее вводится количество автобусных маршрутов \(K\) (1≤\(K\)≤50000). Далее идет \(K\) описаний автобусных маршрутов.

Каждый маршрут описывается четырьмя числами \(A_i\), \(B_i\), \(C_i\), \(D_i\), которые означают, что каждые \(C_i\) минут (т.е. в моменты времени 0, \(C_i\), 2*\(C_i\), …) автобус выходит от контрольного пункта \(A_i\) и через \(D_i\) минут прибывает к контрольному пункту \(B_i\). Все \(C_i\) и \(D_i\) — натуральные и не превышают 10000.

Будем считать, что времени на то, чтобы отметиться на контрольном пункте и на то, чтобы пересесть с автобуса на автобус, участнику не требуется. Т.е. если, например, в момент 10 он прибывает на какой-то контрольный пункт, то дальше он может уехать любым автобусом, отправляющимся от этого контрольного пункта в момент времени 10 или позднее.

Далее вводится число \(M\) — количество контрольных пунктов в маршрутном листе участника (2≤\(M\)≤50). Далее вводятся \(M\) чисел \(P_1\), \(P_2\), …, \(P_M\) — номера контрольных пунктов, которые нужно посетить (числа в этом списке могут повторяться). В момент времени 0 участник находится в пункте \(P_1\). Временем прохождения маршрута считается момент времени, когда участник окажется в пункте \(P_M\).

Выходные данные

Выведите одно число — минимальное время, за которое участник может пройти маршрут. Если существующие автобусные рейсы не позволяют пройти маршрут, выведите одно число –1 (минус один).

Примеры
Входные данные
2 2
2 1 3 1
1 2 5 4
3
1 2 1
Выходные данные
7
Входные данные
3 4
2 1 30 10
1 2 50 40
2 3 45 10
3 1 55 10
3
1 2 1
Выходные данные
65
Входные данные
2 2
1 2 3 1
1 2 5 4
3
1 2 1
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Строка называется палиндромом, если она читается одинаково как слева направо, так и справа налево. Например, строки abba, ata являются палиндромами.

Дана строчка. Ее подстрокой называется некоторая непустая последовательность подряд идущих символов. Напишите программу, которая определит, сколько подстрок данной строки является палиндромами.

Входные данные

Вводится одна строка, состоящая из маленьких латинских букв. Длина строки не превышает 100000 символов.

Выходные данные

Выведите одно число — количество подстрок данной строки, являющихся палиндромами

Примеры
Входные данные
aaa
Выходные данные
6
Входные данные
aba
Выходные данные
4

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест