---> 18 задач <---
Источники --> Личные олимпиады --> Открытая олимпиада школьников
    2002(9 задач)
    2003(10 задач)
    2004(13 задач)
    2005(12 задач)
    2006(12 задач)
    2007(11 задач)
    2008-2009(19 задач)
    2009-2010(23 задач)
    2010-2011(19 задач)
    2011-2012(8 задач)
    2012-2013(21 задач)
    2013-2014(8 задач)
    2014-2015(8 задач)
Страница: 1 2 3 4 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
32 megabytes

В тридесятом государстве есть N деревень. Некоторые пары деревень соединены дорогами. В целях экономии, «лишних» дорог нет, т.е. из любой деревни в любую можно добраться по дорогам единственным образом.

Новейшие исследования показали, что тридесятое государство находится в сейсмически опасной зоне. Поэтому глава государства захотел узнать, какой именно ущерб может принести его державе землетрясение. А именно, он хочет узнать, какое минимальное число дорог должно быть разрушено, чтобы образовалась изолированная от остальных группа ровно изP деревень такая, что из любой деревни из этой группы до любой другой деревни из этой группы по-прежнему можно будет добраться по неразрушенным дорогам (группа изолирована от остальных, если никакая неразрушенная дорога не соединяет деревню из этой группы с деревней не из этой группы).

Вы должны написать программу, помогающую ему в этом.

Входные данные

Первая строка входного файла содержит два числа: N и P (1≤PN≤150). Все остальные строки содержат описания дорог, по одному на строке: описание дороги состоит из двух номеров деревень (от 1 до N), которые эта дорога соединяет. Все числа во входном файле разделены пробелами и/или переводами строки.

Выходные данные

В выходной файл выведите единственное число – искомое количество дорог.

Примеры
Входные данные
11 6
1 2
1 3
1 4
1 5
2 6
2 7
2 8
4 9
4 10
4 11
Выходные данные
2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Заданы координаты клеток на прямой, в которые можно посадить ели. Для каждого сорта ели определены тени, отбрасываемые на восток и на запад. Ели не могут расти в тени других елей. Требуется высадить как можно больше елей и для каждой занятой клетки указать, какой сорт ели будет туда посажен.

Мэр города Урюпинска решил посадить на главной аллее города, которая проходит с запада на восток, голубые ели. Причем сажать ели можно не во всех местах, а только на специально оставленных при асфальтировании аллеи клумбах.

Как оказалось, голубые ели бывают M различных сортов. Для ели каждого сорта известна максимальная длина ее тени в течение дня в западном и в восточном направлении (Wi и Ei соответственно). При этом известно, что ели растут гораздо лучше, если в течение дня они не оказываются в тени других елей.

Координатная ось направлена вдоль аллеи с запада на восток.

По заданным координатам клумб вычислите максимальное число елей, которое можно посадить, соблюдая условие о том, что никакая ель не должна попадать в тень от другой ели.

Входные данные

Во входном файле записано сначала натуральное число M — количество сортов елей (1M100). Затем идет M пар чисел Wi, Ei, описывающих максимальную длину тени в западном и восточном направлении в течение дня для каждого сорта ели (числа Wi, Ei — целые, из диапазона от 0 до 30000). Далее идет натуральное число N — количество клумб, в которых можно сажать ели (1N100). Далее идет N чисел, задающих координаты клумб (координаты — целые числа, по модулю не превышающие 30000). Клумбы перечислены с запада на восток (в порядке возрастания их координат).

Примечание

Если на клумбе с координатой X мы посадили ель, максимальная тень которой в восточном направлении равна E, то все клумбы с координатами от X+1 до X+E–1 попадают в тень от этой ели, а клумба с координатами X+E — уже нет. Аналогично для тени в западном направлении.

Выходные данные

В выходной файл выведите сначала число A — максимальное количество елей, которые удастся посадить, а затем A пар чисел, описывающих ели. Первое число каждой пары задает номер клумбы, в которую садится ель. Второе число определяет номер сорта этой ели.

Примеры
Входные данные
3
10 1
2 2
1 10
10
0
1
3
5
7
9
11
13
15
16
Выходные данные
8
9 2
8 2
7 2
6 2
5 2
4 2
3 2
1 2
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

В спортзале размером NxM метров построили современный аттракцион под названием "Левый лабиринт". Для этого на полу спортзала с интервалом в 1 метр начертили линии, параллельные стенам спортзала. Таким образом, спортзал разбили на NxM клеток. Дальше некоторые из этих клеток покрасили в черный цвет.

Аттракцион заключается в том, что участника ставят в некоторой клетке спортзала и просят как можно быстрее добежать до некоторой другой клетки. При этом накладываются следующие условия:

  • Участнику запрещено ходить по черным клеткам.
  • Придя в какую-то клетку, участник может пойти либо прямо, либо налево, либо направо (если в соответствующем направлении клетка не покрашена в черный цвет): ходить назад, а также ходить по диагонали запрещается.
  • За все время пути участнику разрешается повернуть направо (то есть пойти из текущей клетки направо относительно того, откуда он пришел в данную клетку) не более K раз.
  • В начальной клетке участник может встать лицом в ту сторону, в какую ему захочется. С какой стороны участник прибежит в конечную клетку также не важно.

Известно, что на то, чтобы перебежать из клетки в соседнюю, участник тратит ровно 1 секунду. Требуется вычислить минимальное время, за которое участник сможет достичь конечной клетки.

Входные данные

Во входном файле сначала записано число K — количество разрешенных поворотов направо (целое число из диапазона от 0 до 5), затем записаны числа N и M, задающие размеры спортзала — натуральные числа, не превышающие 20. Далее записано N строк по M чисел в каждой. Число 0 обозначает непокрашенную клетку, число 1 — покрашенную, число 2 — клетку, откуда стартует участник и число 3 — клетку, куда нужно добежать (клетки, помеченные 2 и 3 являются непокрашенными). В лабиринте всегда есть ровно одна начальная клетка и ровно одна клетка, в которую нужно попасть.

Выходные данные

В выходной файл выведите минимальное время, за которое можно добраться в конечную клетку. Если попасть в конечную клетку с соблюдением всех условий нельзя, выведите –1.

Примеры
Входные данные
1 3 4
0 0 2 0
0 1 1 0
0 0 3 0
Выходные данные
6
Входные данные
0 5 5
0 1 0 0 0
0 1 0 1 0
0 0 3 1 0
1 0 1 1 0
2 0 0 0 0
Выходные данные
12
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Анаграммер — специальное устройство для получения из слова его анаграмм (то есть слов, записанных теми же буквами, но в другом порядке). Это устройство умеет выполнять 2 операции:

  1. Взять очередную букву исходного слова и поместить ее в стек.
  2. Взять букву из стека и добавить ее в конец выходного слова.

Стек — это хранилище данных, которое работает по принципу "первый пришел — последний ушел". Стек можно представить себе в виде пирамидки. Когда мы добавляем букву в стек, это соответствует тому, что на стержень пирамидки сверху мы надеваем кольцо, на котором написана соответствующая буква. Когда берем букву из стека, то это соответствует тому, что мы снимаем со стержня верхнее кольцо, и смотрим, какая буква на нем написана.

Например, слово TROT в слово TORT может быть преобразовано анаграммером двумя различными последовательностями операций: 11112222 или 12112212.

Напишите программу, которая по двум заданным словам вычисляет количество различных последовательностей операций анаграммера, которые преобразуют первое из этих слов во второе, а также находит сами эти последовательности.

Входные данные

Первая строка входного файла содержит исходное слово, а вторая — слово, которое необходимо получить. Слова состоят только из заглавных латинских букв и имеют длину не более 50 символов. Оба слова имеют одинаковую длину. В этих строках не содержится пробелов.

Выходные данные

В первой строке выходного файла должно содержаться количество последовательностей операций анаграммера, с помощью которых можно преобразовать первое слово во второе.

Если это количество не превышает 1000, то в последующих строках должны содержаться сами последовательности. Каждая последовательность должна быть выведена на отдельной строке, и состоять из цифр 1 и 2 (указывающих порядок выполнения операций), выведенных без пробелов.

Примеры
Входные данные
TORT
TROT
Выходные данные
2
11112222
12112212
Входные данные
MOSCOW
OMCOWS

Выходные данные
1
112211212122

0

2

2

2

2

0

2

2

2

2

1

1

2

2

2

1

1

0

0

0

На поле NxM клеток (N строк и M столбцов) положили K прямоугольников один поверх другого в случайном порядке. Длины сторон прямоугольников выражаются целым числом клеток. Прямоугольники не выходят за границы поля. Границы прямоугольников совпадают с границами клеток поля.

Получившуюся ситуацию записали в таблицу чисел (каждой клетке поля соответствует клетка таблицы). Если клетка поля не закрыта прямоугольником, то в соответствующую клетку таблицы записали число 0. Если же клетка закрыта одним или несколькими прямоугольниками, то в соответствующую клетку таблицы записали число, соответствующее номеру самого верхнего прямоугольника, закрывающего эту клетку.

По содержимому таблицы требуется определить положение и размеры прямоугольников.

Гарантируется, что во входных данных содержится информация, которой достаточно для однозначного определения размеров прямоугольников.

Входные данные

В первой строке входного файла записаны целые числа N, M, K (1N200, 1M200, 1K255). Далее следует N строк по M чисел в каждой — содержимое таблицы. Все числа в таблице целые, находятся в диапазоне от 0 до K включительно.

Выходные данные

В выходной файл необходимо выдать K строк. Каждая строка должна описывать соответствующий ее номеру прямоугольник четырьмя числами R C H W (R и C должны описывать координаты левого нижнего угла прямоугольника, а H и W — координаты правого верхнего угла). Числа должны разделяться пробелом.

Оси координат устроены следующим образом: начало координат находится в нижнем левом углу поля, а оси координат направлены вдоль сторон поля (ось Ox — вдоль нижней стороны, а ось Oy — вдоль левой стороны). Клетки поля имеют размер 1x1. Таким образом, координаты левого нижнего угла поля — (0,0), правого верхнего — (M,N). Заметьте, что вы должны вывести координаты углов прямоугольников (как точек) в этой системе координат, а не координаты угловых клеток, покрытых прямоугольниками.

Примеры
Входные данные
4 5 2
0 2 2 2 2
0 2 2 2 2
1 1 2 2 2
1 1 0 0 0
Выходные данные
0 0 2 2
1 1 5 4

Страница: 1 2 3 4 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест