Родители подарили мальчику Пете очень много одинаковых кубиков. Наиболее интересным сооружением из кубиков Петя счел двусторонние лесенки.

В основании (нижнем ряду) такой лесенки расположено \(N\) кубиков, а каждый следующий ряд
кубиков укладывается на предыдущий так, что один кубик укладывается ровно на один нижестоящий кубик, а по крайней мере на самый правый и самый левый кубики предыдущего ряда новые кубики не кладутся (чтобы получилась ступенька).
Петя поручил старшему брату подсчитать, сколько можно построить различных лесенок,
состоящих из ровно \(K\) рядов кубиков, в основании которых лежит ровно \(N\) кубиков. При этом, если одну лесенку можно получить из другой путем зеркального отображения, то они все равно считаются различными.