Страница: 1 Отображать по:
#583
  
Источники: [ Командные олимпиады, ВКОШП, 2000, Задача A ]
Дан список слов, разрешено за 0 операций повторять предыдущее слово и удалять последний символ. Набор символа в конце слова занимает 1 операцию. Требуется набрать все слова в произвольном порядке (первое фиксировано) за наименьшее количество операций.

Компания Macrohard выпустила новую версию своего редактора Nottoobad, который понимает некоторые голосовые команды. К сожалению, этих команд всего две - "повторить последнее слово" и "стереть последний символ". Причем при исполнении команды "повторить последнее слово" редактор автоматически вставляет пробел, который разделяет слова.

Однако компания утверждает, что с помощью этого редактора можно набирать текст, нажимая клавиши на клавиатуре гораздо реже. Например, чтобы набрать фразу "this thin thing" достаточно нажать на клавиши на клавиатуре всего 6 раз:

Чтобы повысить популярность своего продукта, компания решила провести конкурс, победителем которого станет тот, кто сможет набрать заданный набор слов в редакторе за наименьшее количество нажатий на клавиши. Причем первое слово зафиксировано, а остальные могут быть набраны в произвольном порядке. То есть, если надо набрать слова "apple", "plum" и "apricote", то первым надо набрать "apple", а слова "plum" и "apricote" можно поменять местами.

Поскольку Вы собираетесь участвовать в конкурсе, и у Вас есть знакомый в компании, который сообщил Вам по секрету набор слов, которые надо будет набрать, то неплохо бы написать программу, которая найдет порядок набора слов, при котором количество нажатий на клавиши будет минимальным.

Входные данные

В первой строке входных данных задано число \(N\) (1 <= \(N\) <= 100) – количество слов, которые предстоит набрать. Следующие \(N\) строк содержат слова – последовательности маленьких латинских букв, не длиннее 100 символов. Помните, что первое слово необходимо набрать первым!

Выходные данные

Выведите в первой строке число – минимальное количество нажатий на клавиши, которое придется совершить, чтобы набрать все указанные слова в редакторе Nottoobad. На следующих строках выведите слова в том порядке, в котором их следует набирать для достижения этого количества нажатий. Если решений несколько, выведите любое из них.

Примеры
Входные данные
1
lonelyword
Выходные данные
10
lonelyword
Входные данные
2
a
b
Выходные данные
2
a
b
Входные данные
2
abcdefg
abcdefg
Выходные данные
7
abcdefg
abcdefg
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes
Дано множество строк W. Необходимо найти минимальное множество строк X, такое, что путем конкатенации строк мн-ва X можно составить то же мн-во, что и путем конкатенации строк W

Рассмотрим две строки \(α\) и \(β\). Их конкатенацией называется строка, получающаяся в результате приписывания к строке \(α\) строки \(β\). Эта строка обозначается \(αβ\). Например, конкатенацией строк `ab' и `ac' будет строка `abac'. Очевидно, что это определение естественным образом распространяется на конкатенацию произвольного количества строк. Так, конкатенацией нуля строк будет пустая строка, а конкатенацией одной строки будет она сама.

Рассмотрим некоторое множество \(W\), состоящее из строк. Назовём его замыканием множество \(W\)*, состоящее из тех и только тех строк, которые можно получить в результате конкатенации нуля и более строк из множества \(W\). Таким образом, множество \(W\)* содержит пустую строку, и если строка α принадлежит множеству \(W\)*, а строка \(β\) принадлежит множеству \(W\), то строка \(αβ\) принадлежит множеству \(W\)*. Более того, все элементы множества \(W\)* можно представить в таком виде, то есть \(W\)* является пересечением всех множеств с указанными выше свойствами. Например, если \(W\)={a,ab}, то \(W\)* состоит из всех строк, в которых перед каждой буквой `b' идёт хотя бы одна буква `a'.

Задано некоторое множество строк \(W\). Требуется найти множество \(X\), такое, что \(W\)*=\(X\)* и множество \(X\) имеет минимальное возможное число элементов. В случае, если таких множеств несколько, подходит любое из них. Например, если \(W\)={a,aabb,ab,ac,b,bac}, то единственным множеством, удовлетворяющим условиям задачи будет множество {a,ac,b}.

Входные данные

Входной файл состоит из набора строк, каждая из которых является элементом множества \(W\). Каждая строка из множества \(W\) встречается во входном файле хотя бы один раз. Суммарная длина всех строк во входном файле не превосходит \(10^4\). Количество строк во входном файле не превосходит \(10^4\). После каждой строки из множества \(W\) во входном файле идёт перевод строки (пара символов с ASCII кодами 13 и 10). Строки состоят из символов с ASCII кодами от 33 до 126 включительно.

Выходные данные

Выведите в выходной файл элементы одного из множеств \(X\), удовлетворяющих условиям задачи. Каждая строка множества \(X\) должна быть выведена ровно один раз. Строки должны идти в лексикографическом порядке (лексикографический порядок используется в словарях, в этом порядке строка `ab' меньше строки `aba' и строка `ab' меньше строки `ac'). После каждой строки множества \(X\) должен идти один перевод строки.

Примеры
Входные данные
a
aabb
ab
ac
b
bac
Выходные данные
a
ac
b

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест