Страница: 1 2 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Профиль Уральских гор задается ломаной (x1, y1), (x2, y2), …, (xN, yN), для координат вершин которой верны неравенства x1 < x2 < … < xN. Начальные и конечные точки профиля расположены на уровне моря (y1 = yN = 0).

На горном профиле заданы две различные точки A и B, между которыми требуется проложить дорогу. Эта дорога будет проходить по склонам гор и проектируемому горизонтальному мосту, длина которого не должна превышать L. Оба конца моста находятся на горном профиле. Дорога заходит на мост с одного конца и выходит с другого. Мост не может содержать точек, расположенных строго под ломаной (строительство тоннелей не предполагается).

Возможные примеры расположения моста

1

Невозможное расположение моста

2

Достоверно известно, что строительство такого моста в данной местности возможно, причем позволит сократить длину дороги из точки A в точку B. Требуется написать программу, которая определит такое расположение горизонтального моста, что длина дороги от точки A до точки B будет наименьшей.

Входные данные

Первая строка входных данных содержит два целых числа N и L — количество вершин ломаной (2 ≤ N ≤ 100 000) и максимальную длину моста (1 ≤ L ≤ 106) соответственно. Вторая строка  содержит координаты точки A, третья строка — координаты точки B. Точки A и B различны.

Последующие N строк содержат координаты вершин ломаной (x1, y1), (x2, y2), …, (xN, yN). Координаты вершин ломаной, а также точек A и B, задаются парой целых чисел, не превосходящих по абсолютному значению 106. Гарантируется, что x1 < x2 < … < xN и y1 = yN = 0, а также, что точки A и B принадлежат ломаной.

Выходные данные

В первой и второй строках выходных данных выведите координаты концов моста с точностью не менее 5 знаков после десятичной точки. В случае, когда решений несколько, выведите любое из них.

В примере в первой строке указана длина дороги от точки A до точки B с учётом построенного моста. Её не нужно выводить.

Примечание

Решения, корректно работающие при N ≤ 2000, будут оцениваться, исходя из 80 баллов.

Примеры
Входные данные
5 3
1 1
3 1
-1 0
0 2
2 0
4 2
5 0
Выходные данные
2.000000000
1.00000 1.00000
3.00000 1.00000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Заданы вещественные числа. Требуется определить, возможно ли упорядочить их с помощью стека.

Для транспортирования материалов из цеха А в цех В используется конвейер. Материалы упаковываются в одинаковые контейнеры и размещаются на ленте один за одним в порядке изготовления в цехе А. Каждый контейнер имеет степень срочности обработки в цехе В. Для упорядочивания контейнеров по степени срочности используют накопитель, который находится в конце конвейера перед входом в цех В. Накопитель работает пошагово, на каждом шаге возможны следующие действия:

накопитель перемещает первый контейнер из ленты в цех В;

накопитель перемещает первый контейнер из строки в склад (в складе каждый следующий контейнер помещается на предыдущий);

накопитель перемещает верхний контейнер из склада в цех В.

Напишите программу, которая по последовательности контейнеров определит, можно ли упорядочить их по степени срочности пользуясь описанным накопителем.

Входные данные

Входной файл в первой строке содержит количество тестов N. Далее следует N строк, каждый из которых описывает отдельный тест и содержит целое число K (1 K 10000) — количество контейнеров в последовательности и K действительных чисел — степеней срочности контейнеров в порядке их поступления из цеха А (меньшим числам соответствует большая степень срочности).

Выходные данные

Каждая строка выходного файла должна содержать ответ для одного теста. Необходимо вывести 1, если необходимое упорядочивание возможно, или 0 в противном случае.

Примеры
Входные данные
2
2 2.9 2.1
3 5.6 9.0 2.0
Выходные данные
1
0
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Сегодня на уроке физики рассказывали удивительные вещи. Придя домой, Витя решил проверить слова учителя о том, что если взять два одинаковых сосуда, соединенных тонкой трубкой на уровне основания, то уровень жидкости при любом ее количестве также будет одинаковым для обоих сосудов.

Способ убедиться в правильности утверждения Витя избрал довольно оригинальный. Он взял аквариум с основанием длиной N и шириной 1, очень высокими стенками, и поставил N –1 перегородку параллельно узкой боковой стенке аквариума, тем самым, разделив аквариум на N одинаковых отсеков. Каждая перегородка имеет ширину 1 и очень большую высоту. Толщиной перегородки можно пренебречь. В каждой из перегородок есть точечное отверстие на высоте Hi, диаметром которого также можно пренебречь. После всех этих приготовлений Витя медленно наливает в первый отсек (между стенкой и 1ой перегородкой) C литров воды. В часть аквариума размером 1x1x1 вмещается ровно один литр воды. Так как стенки и перегородки в аквариуме были очень высокими, то через край вода не переливалась. После установления стационарного состояния он замерил уровень жидкости в каждом из N сосудов.

Теперь он хочет убедиться, что его экспериментальные данные не опровергают законы, рассказанные на уроке. Он обратился к вам с просьбой выяснить, какой должна быть высота жидкости в каждом из сосудов с теоретической точки зрения.

Рассмотрим подробно случай N = 3. Пусть сначала H1 < H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вода станет поступать во второй отсек до тех пор, пока уровни в обоих отсеках не сравняются (или уровень воды в первом отсеке окажется равным H1, тогда во втором отсеке он будет на уровне СH1). Далее уровень жидкости в первых двух частях будет увеличиваться равномерно (или не будет меняться). Как только вода достигнет второго отверстия, вся она будет поступать в третий отсек, опять же до тех пор, пока уровни жидкости во всех трех частях не сравняются или вода в первых двух отсеках достигнет уровня H2. После этого, если воды оказалось достаточно, весь аквариум будет заполняться равномерно.

Пусть теперь H1 > H2. Как только жидкость в первом отсеке достигнет уровня первого отверстия, вся вода станет поступать во второй отсек. Если после этого уровень во втором отсеке сравняется с уровнем второго отверстия, то вода станет выливаться в третий до тех пор, пока высоты жидкостей во втором и третьем отсеках не станут равными. Далее уровень воды в них будет равномерно увеличиваться, пока не достигнет первого отверстия. После этого весь аквариум будет заполняться равномерно.

Входные данные

В первой строке записаны целые N и C (1 ≤ N ≤ 100000, 0 ≤ C ≤ 2*109). В следующих N –1 строках содержится по одному целому числу Hi (0 ≤ Hi ≤ 2*109), обозначающему высоту отверстия в i-й перегородке.

Выходные данные

Выведите N чисел, каждое на новой строке, с точностью до шести знаков после десятичной точки —уровень жидкости в 1, 2, ..., N отсеке соответственно.

Частичные ограничения

Первая группа состоит из тестов, в которых N ≤ 100. Оценивается в 30 баллов.

Вторая группа состоит из тестов, в которых N ≤ 10000. Оценивается в 30 баллов.

Примеры
Входные данные
4 4
3
2
1
Выходные данные
3.00000000000000000000
1.00000000000000000000
0.00000000000000000000
0.00000000000000000000
Входные данные
4 10
1
2
3
Выходные данные
3.00000000000000000000
3.00000000000000000000
3.00000000000000000000
0.99999999999999911000
ограничение по времени на тест
5.0 second;
ограничение по памяти на тест
64 megabytes

 Дана последовательность N прямоугольников различной ширины и высоты (wi,hi). Прямоугольники расположены, начиная с точки (0, 0), на оси ОХ вплотную друг за другом (вправо). Требуется найти M - площадь максимального прямоугольника (параллельного осям координат), который можно вырезать из этой фигуры.

Формат входных данных

В первой строке задано число N (1 ≤ N ≤ 8000). Далее идет N строк. В каждой строке содержится два числа: ширина и высота i-го прямоугольника. Значение , 0 < hi ≤ 3*104.

Формат выходных данных

Вывести одно число М. Значение M не превосходит 2*109.

Примеры
Входные данные
3
4 3
2 1
2 5
Выходные данные
12
Входные данные
3
4 3
2 1
3 5
Выходные данные
15
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Формат XML является распространенным способом обмена данными между различными программами. Недавно программист Иванов написал небольшую программу, которая сохраняет некоторую важную информацию в виде XML-строки.

XML-строка состоит из открывающих и закрывающих тегов.

Открывающий тег начинается с открывающей угловой скобки (<), за ней следует имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка (>). Примеры открывающих тегов: <a>, <dog>.

Закрывающий тег начинается с открывающей угловой скобки, за ней следует прямой слеш (/), затем имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка. Примеры закрывающихся тегов: </a>, </dog>.

XML-строка называется корректной, если она может быть получена по следующим правилам:

  • Пустая строка является корректной XML-строкой.
  • A и B — корректные XML-строки, то строка AB, получающаяся приписыванием строки B в конец строки A, также является корректной XML-строкой.
  • Если A — корректная XML-строка, то строка <X>A</X>, получающаяся приписыванием в начало A открывающегося тега, а в конец — закрывающегося с таким же именем, также является корректной XML-строкой. Здесь X — любая непустая строка из строчных букв латинского алфавита.

Например, представленные ниже строки:

<a></a>

<a><ab></ab><c></c></a>

<a></a><a></a><a></a>

являются корректными XML-строками, а такие строки как:

<a></b>

<a><b>

<a><b></a></b>

не являются корректными XML-строками.

Иванов отправил файл с сохраненной XML-строкой по электронной почте своему коллеге Петрову. Однако, к сожалению, файл повредился в процессе пересылки: ровно один символ в строке заменился на некоторый другой символ.

Требуется написать программу, которая по строке, которую получил Петров, восстановит исходную XML-строку, которую отправлял Иванов.

Входные данные

Входной файл содержит одну строку, которая заменой ровно одного символа может быть превращена в корректную XML-строку. Длина строки лежит в пределах от 7 до 1000, включительно. Строка содержит только строчные буквы латинского алфавита и символы «<» (ASCII код 60), «>»(ASCII код 62) и «/»(ASCII код 47).

Строка во входном файле заканчивается переводом строки.

Выходные данные

Выходной файл должен содержать корректную XML-строку, которая может быть получена из строки во входном файле заменой ровно одного символа на другой. Если вариантов ответа несколько, можно вывести любой.

Примеры входных и выходных файлов

input

output

<a></b>

<a></a>

<a><aa>

<a></a>

<a><>a>

<a></a>

<a/</a>

<a></a>



Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест