Окружная олимпиада(18 задач)
Региональный этап(109 задач)
Заключительный этап(97 задач)
Все буквы латинского алфавита делятся на гласные и согласные. Гласными буквами являются: a, e, i, o, u, y. Остальные буквы являются согласными.
Слово называется благозвучным, если в этом слове не встречается больше двух согласных букв подряд и не встречается больше двух гласных букв подряд. Например, слова abba, mama, program — благозвучные, а слова aaa, school, search — неблагозвучные.
Вводится слово. Если это слово является неблагозвучным, то разрешается добавлять в любые места этого слова любые буквы. Определите, какое минимальное количество букв можно добавить в это слово, чтобы оно стало благозвучным.
Вводится слово, состоящее только из маленьких латинских букв. Длина слова не превышает 30 символов.
Выведите минимальное число букв, которые нужно добавить в это слово, чтобы оно стало благозвучным.
Комментарии к примерам тестов
1. Слово уже является благозвучным.
2. Достаточно добавить одну гласную букву, например, между буквами s и с
program
0
school
1
Саша – страстный любитель компьютерных игр. Недавно он купил новейшую игру «Математическое казино». В этом казино играют на виртуальные деньги – мани, а каждый раунд игры состоит в решении интереснейшей задачи по математике. Перед началом игры у Саши ноль мани на счету, но программа в любой момент предоставляет ему неограниченный кредит.
Перед началом каждого раунда программа сообщает, на какую тему будет очередная математическая задача и Саша делает ставку на то, что он ее решит. В самом начале игры Саша всегда делает ставку в 1 мани. Если Саша решает задачу правильно, то он выигрывает раунд и ставка плюсуется к его счету. Если он допускает ошибку в решении, то он проигрывает, и ставка вычитается из его счета. Саша очень самоуверенный и любое неверное решение задачи считает чистой случайностью, поэтому после проигрыша Саша всегда увеличивает ставку в 2 раза. Однако после выигрыша, дабы не вспугнуть удачу, Саша всегда снижает ставку до 1 мани. Наконец, одолев очередную задачу, и выиграв этот раунд, Саша решает закончить игру.
Например, пусть Саша правильно решил первую задачу (выиграл начальную ставку в 1 мани, поставил на следующий раунд 1 мани), затем неправильно решил вторую задачу (проиграл 1 мани и удвоил ставку), неправильно решил и третью задачу (проиграл 2 мани и снова удвоил ставку), но четвертую задачку ему все-таки удалось решить правильно (выиграл 4 мани, сбросил ставку на 1 мани). Затем он правильно решает и пятую задачу (выиграл 1 мани) и заканчивает игру. Итого на его счету после игры: 1 – 1 – 2 + 4 + 1 = 3 мани.
Требуется написать программу, которая по имеющейся записи хронологии игры определяет, какое количество мани выиграл или проиграл Саша.
Первая строка содержит целое число N (0 < N ≤ 2000) — количество задач, которое решал Саша. Во второй строке располагаются N чисел 0 или 1 через пробел: 0, если Саша решил очередную задачку неправильно, и 1 – если правильно.
Выведите одно целое число — выигрыш или проигрыш Саши (выигрыш определяется положительным числом, а проигрыш – отрицательным).
5 1 1 0 1 1
4
На контрольной работе N учеников сидят в ряд. Для каждого ученика известно, какую оценку он получил бы, если бы писал эту контрольную самостоятельно (оценка — это число от 2 до 5). Однако ученики могут писать контрольную не только самостоятельно, но и списывать у своего соседа, но только если сосед пишет контрольную самостоятельно. В этом случае списывающий получит такую же оценку, какую получит тот, у кого он списал.
А именно (правила применяются строго в указанном порядке):
Определите, кто какую оценку в итоге получит.
Вводится число N (1<=N<=10) - количество учеников, и далее последовательность из N чисел, описывающая, кто на какую оценку может написать контрольную, если будет писать самостоятельно.
Выведите N чисел - оценки, которые получат ученики за контрольную.
1. Первый и пятый ученики будут писать самостоятельно. Второй спишет у первого, а четвертый — у пятого (в итоге также получат пятерки). Третьему не у кого списывать, так как его соседи будут писать работу не самостоятельно.
2. Второй и четвертый спишут у третьего, пятый — у шестого.
5 5 2 3 4 5
5 5 3 5 5
6 2 2 3 2 2 4
2 3 3 3 4 4
Сегодня мальчик Саша на уроке математики узнал про фракталы. Учитель показывал так называемую «кривую дракона». Она представляет собой геометрическую фигуру, которая строится следующим образом: на первом шаге проводится отрезок из начала координатной плоскости в точку (0; 1). Далее на каждом шаге из конца фрактала повторяется уже нарисованная часть фигуры, повернутая на 90 градусов против часовой стрелки (см. рисунок).
После уроков Саша попробовал сам изобразить «кривую дракона», и теперь он хочет знать, в какой точке координатной плоскости он закончил рисовать фрактал, проделав описанные выше N шагов. Требуется написать программу, которая по заданному числу N определяет координаты конца фрактала после выполнения N шагов.
Вводится одно целое число N (1 ≤ N ≤ 30).
Выведите два числа через пробел — координаты конца фрактала.
2
1 1
4
2 -2
В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из \(N\) этапов, каждый длиной \(a_i\) километров (\(1 \le i \le N\)). У организаторов имеется большое количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении \(K\) километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.
Напишите программу, которая по известной схеме эстафеты олимпийского огня, определяет необходимое суммарное количество факелов для проведения эстафеты.
В первой строке заданы два натуральных числа \(N\) и \(K\) (\(N \le 100, K \le 10^6\) ).
Во второй строке заданы \(N\) натуральных чисел \(a_i (a_i \le 10^6 )\).
В первой строке выведите одно натуральное число \(F\) — количество факелов, которое понадобится организаторам для проведения эстафеты олимпийского огня.
В данной задаче баллы за каждый тест начисляются независимо от прохождения остальных тестов и суммируются.
4 3 3 5 4 1
6
10 1 1 2 3 4 5 6 7 8 9 10
55