Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
Требуется определить количество нечетных чисел в заданной строке треугольника Паскаля.
Треугольник Паскаля – это бесконечный треугольник из чисел, который имеет следующий вид:
Строки треугольника Паскаля нумеруются с нуля, числа в каждой строке также нумеруются с нуля. Нулевая строка содержит единственное число – единицу, а каждая следующая содержит на одно число больше, чем предыдущая. Нулевое и последнее число в каждой строке равны единице, а каждое из остальных равно сумме двух чисел предыдущей строки, расположенных над ним.
Таким образом, \(i\)-ая строка содержит \(i\) + 1 число. Если обозначить \(j\)-ый элемент \(i\)-ой строки как \(a_i\),\(j_,\) то выполняется равенство \(a_i\),\(j\) = \(a_i\) - 1,\(j\) - 1 + \(a_i\)-1,\(j\). Заметим, что это равенство выполняется и для крайних элементов, если положить отсутствующие элементы предыдущей строки (элементы с номерами -1 и \(i\)) равными нулю.
Коля хочет узнать, сколько нечетных чисел в n-ой строке треугольника Паскаля. Он начал рисовать треугольник, но очень скоро тот перестал помещаться на листочек. Тогда Коля решил сделать это с помощью компьютера. Помогите ему.
Во входном файле содержится число \(n\) (0 ≤ \(n\) ≤ 2 ×\(10^9\)).
Выходной файл должен содержать одно число – количество нечетных чисел в \(n\)-ой строке треугольника Паскаля.
0
1
5
4
7
8
Один из известных производителей товаров для детей во Флатландии собирается выпустить на рынок новую развивающую игру. Набор для игры будет состоять из некоторого количества отрезков, из которых дети смогут складывать различные фигуры.
Однако на презентации нового продукта перед государственной комиссией один из специалистов указал на то, что составление невырожденных \(n\)-угольников может крайне негативно сказаться на психическом развитии детей, поэтому следует избегать возможности появления в наборе такого множества из \(n\) отрезков, из которых можно составить невырожденный \(n\)-угольник.
Производственная линия сконструирована таким образом, что длины получающихся отрезков могут быть натуральными числами, не превосходящими \(k\). Директор компании хочет, чтобы набор состоял из как можно большего числа отрезков. Ваша задача – построить такой набор.
Входной файл содержит два целых числа: \(n\) – количество вершин в запрещенных многоугольниках и \(k\) – максимальную длину отрезков (3 ≤ \(n\) ≤ 10, 1 ≤ \(k\) ≤ \(10^8\)).
На первой строке выходного файла выведите одно число – наибольшее возможное количество отрезков в наборе, которое может быть достигнуто при данных ограничениях.
На второй строке выведите длины этих отрезков в неубывающем порядке. Если решений несколько, выведите любое.
3 7
5 1 1 2 3 5