Темы --> Информатика --> Алгоритмы --> Динамическое программирование --> Динамическое программирование: один параметр
---> 9 задач <---
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Профиль Уральских гор задается ломаной (x1, y1), (x2, y2), …, (xN, yN), для координат вершин которой верны неравенства x1 < x2 < … < xN. Начальные и конечные точки профиля расположены на уровне моря (y1 = yN = 0).

На горном профиле заданы две различные точки A и B, между которыми требуется проложить дорогу. Эта дорога будет проходить по склонам гор и проектируемому горизонтальному мосту, длина которого не должна превышать L. Оба конца моста находятся на горном профиле. Дорога заходит на мост с одного конца и выходит с другого. Мост не может содержать точек, расположенных строго под ломаной (строительство тоннелей не предполагается).

Возможные примеры расположения моста

1

Невозможное расположение моста

2

Достоверно известно, что строительство такого моста в данной местности возможно, причем позволит сократить длину дороги из точки A в точку B. Требуется написать программу, которая определит такое расположение горизонтального моста, что длина дороги от точки A до точки B будет наименьшей.

Входные данные

Первая строка входных данных содержит два целых числа N и L — количество вершин ломаной (2 ≤ N ≤ 100 000) и максимальную длину моста (1 ≤ L ≤ 106) соответственно. Вторая строка  содержит координаты точки A, третья строка — координаты точки B. Точки A и B различны.

Последующие N строк содержат координаты вершин ломаной (x1, y1), (x2, y2), …, (xN, yN). Координаты вершин ломаной, а также точек A и B, задаются парой целых чисел, не превосходящих по абсолютному значению 106. Гарантируется, что x1 < x2 < … < xN и y1 = yN = 0, а также, что точки A и B принадлежат ломаной.

Выходные данные

В первой и второй строках выходных данных выведите координаты концов моста с точностью не менее 5 знаков после десятичной точки. В случае, когда решений несколько, выведите любое из них.

В примере в первой строке указана длина дороги от точки A до точки B с учётом построенного моста. Её не нужно выводить.

Примечание

Решения, корректно работающие при N ≤ 2000, будут оцениваться, исходя из 80 баллов.

Примеры
Входные данные
5 3
1 1
3 1
-1 0
0 2
2 0
4 2
5 0
Выходные данные
2.000000000
1.00000 1.00000
3.00000 1.00000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Дана строка и словарь. Требуется разбить строку на слова из словаря.

У Васи на клавиатуре не работает клавиша пробел. Поэтому все тексты он теперь набирает слитно. Напишите программу, которая будет разделять набранный Васей текст на слова из данного словаря.

Формат входных данных

Сначала на вход программы поступает текст, введенный Васей – одна строка из не более чем 100 латинских строчных букв. В следующей строке входных данных задается значение N – количество слов в словаре (N – натуральное число, не превосходящее 2000). В следующих N строках записаны слова из словаря – по одному слову в  строке, каждое слово содержит не более 20 латинских строчных букв. Слова записаны в алфавитном порядке.

Формат выходных данных

Выведите Васин текст с пробелами между словами (пробел после последнего слова допустим). Если возможно несколько вариантов разбиения строки на слова, выведите  любой их них. Гарантируется, что хотя бы один способ разбиения строки на словарные слова существует.

Примеры
Входные данные
whatcanido
6
a
an
can
do
i
what
Выходные данные
what can i do 
ограничение по времени на тест
3.0 second;
ограничение по памяти на тест
64 megabytes
N человек хотят купить билеты. Для каждого известны 3 числа A, B и C - время покупки билета для себя, для себя и следующего, для себя и двух следующих. Требуется купить билеты всем за кратчайшее время.

За билетами на премьеру нового мюзикла выстроилась очередь из N человек, каждый из которых хочет купить 1 билет. На всю очередь работала только одна касса, поэтому продажа билетов шла очень медленно, приводя «постояльцев» очереди в отчаяние. Самые сообразительные быстро заметили, что, как правило, несколько билетов в одни руки кассир продаёт быстрее, чем когда эти же билеты продаются по одному. Поэтому они предложили нескольким подряд стоящим людям отдавать деньги первому из них, чтобы он купил билеты на всех.

Однако для борьбы со спекулянтами кассир продавала не более 3-х билетов в одни руки, поэтому договориться таким образом между собой могли лишь 2 или 3 подряд стоящих человека.

Известно, что на продажу i-му человеку из очереди одного билета кассир тратит Ai секунд, на продажу двух билетов — Bi секунд, трех билетов — Ci секунд. Напишите программу, которая подсчитает минимальное время, за которое могли быть обслужены все покупатели.

Обратите внимание, что билеты на группу объединившихся людей всегда покупает первый из них. Также никто в целях ускорения не покупает лишних билетов (то есть билетов, которые никому не нужны).

Входные данные

Во входном файле записано сначала число N — количество покупателей в очереди (1≤N≤5000). Далее идет N троек натуральных чисел Ai, Bi, Ci. Каждое из этих чисел не превышает 3600. Люди в очереди нумеруются начиная от кассы.

Выходные данные

В выходной файл выведите одно число — минимальное время в секундах, за которое могли быть обслужены все покупатели.

Примеры
Входные данные
5
5 10 15
2 10 15
5 5 5
20 20 1
20 1 1
Выходные данные
12
Входные данные
2
3 4 5
1 1 1
Выходные данные
4

В школу бальных танцев профессора Падеграса записались n учеников — мальчиков и девочек. Профессор построил их в один ряд, и хочет отобрать из них для первого занятия группу стоящих подряд учеников, в которой количество мальчиков и девочек одинаково. Сколько вариантов выбора есть у профессора?

Входные данные

В первой строке задано число n (1 ≤ n ≤ 106). Во второй строке задается описание построенного ряда из мальчиков и девочек — строка из n символов a и b (символ a соответствует девочке, а символ b — мальчику).

Выходные данные

В единственной строке должно содержаться единственное число — количество вариантов выбора требуемой группы.

Система оценки

Тесты в этой задаче разбиты на группы. Баллы начисляются только за группу целиком в том случае, когда пройдены все тесты группы, а также все тесты предыдущих групп.

  1. Тест 1. Тест из условия, оценивается в 0 баллов.
  2. Тесты 2–8. \(N \le 101\), оцениваются в 30 баллов.
  3. Тесты 9–14. \(N \le 6\,000\), оцениваются в 30 баллов.
  4. Тесты 15–20. Дополнительных ограничений нет, оцениваются в 40 баллов.

Примеры
Входные данные
8
aabbaabb
Выходные данные
10
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вася с Петей играют в следующую игру. Вася берет n картонных карточек, и на каждой из них с обеих сторон пишет по числу. После этого он выкладывает карточки в некотором порядке перед Петей. Пронумеруем карточки от 1 до n в том порядке, в котором их выложил Вася.

Петя пытается добиться того, чтобы последовательность чисел, написанных на карточках стала строго монотонной (возрастающей или убывающей). Для этого ему разрешается совершать следующие действия: выбрать два числа l и r, такие что 1 l r n и перевернуть каждую из карточек от карточки номер l до карточки номер r.

Напомним, что последовательность c1, . . . , cn называется строго возрастающей, если выполняются неравенства c1 < c2 < < cn, и строго убывающей, если выполняются неравенства c1 > c2 > … > cn.

Напишите программу, которая по описанию карточек определяет, какое минимальное число действий должен совершить Петя для того, чтобы добиться своей цели.

Входные данные

Первая строка входного файла содержит целое число n (1 n 100000). Каждая из последующих n строк описывает одну карточку и содержит два числа — ai написано на ее лицевой стороне, а bi — на оборотной. Все числа ai и bi находятся в диапазоне от 1 до 109.

Выходные данные

В первой строке выходного файла выведите минимальное число действий, которое должен совершить Петя. Если Петина цель недостижима, то выведите в выходной файл число -1.

Комментарий к примеру тестов

В первом примере для достижения цели Петя может перевернуть карточки со второй по третью.

В третьем примере можно, например, первым действием перевернуть карточки со второй по шестую, а вторым — четвертую карточку.

Примеры
Входные данные
3
3 4
1 2
4 1
Выходные данные
1
Входные данные
3
1 2
4 1
3 4
Выходные данные
-1
Входные данные
6
1 2
3 2
2 3
4 5
6 5
5 6
Выходные данные
2

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест