К 50-летию первого пилотируемого полета в космос решено создать новый тип космического корабля многоразового использования “Восторг”. Прямоугольная часть его корпуса (далее прямоугольник) должна быть облицована квадратными термозащитными плитками разных цветов одного и того же размера. Прямоугольник состоит из \(r\) рядов по \(c\) плиток в каждом. Плитки должны образовывать заданный рисунок.
Облицовка космического корабля отдельными плитками очень трудоемка, поэтому для выкладывания заданного рисунка используются одинаковые прямоугольные панели, состоящие из плиток. Панели крепятся на корпусе одна за другой, заполняя ряд за рядом сверху вниз. Каждый ряд панелей может быть сдвинут относительно предыдущего на одно и то же число плиток. При этом панели могут выходить за пределы прямоугольника. Панели должны быть одинаково ориентированы, то есть при параллельном переносе одной панели на место другой цвета образующих эти панели плиток должны совпадать.
Главный конструктор хочет выбрать такой размер панели \(a\times b\) и сдвиг \(s\), чтобы этими панелями можно было выложить заданный рисунок, и площадь панели была минимальна.
Требуется написать программу, которая по заданному расположению плиток в прямоугольнике рассчитывает размеры минимальной по площади панели, которую можно использовать при его облицовке, а также величину сдвига вправо (\(0 \leq s < b\)) каждого следующего ряда относительно предыдущего.
Первая строка входного файла содержит два целых числа: \(r\) и \(c\) – размеры прямоугольника в плитках. В последующих \(r\) строках указаны цвета плиток фрагмента. Каждый из \(k \leq 26\) цветов обозначен одной из первых \(k\) прописных букв латинского алфавита. Гарантируется, что для этого прямоугольника можно подобрать панель размера \(a\times b\), такую, что \(2a \leq r\) и \(2b \leq c\).
ВВ выходной файл необходимо вывести три целых числа \(a\), \(b\) и \(s\), удовлетворяющих условиям задачи. Если решений несколько, разрешается вывести любое из них.
Во втором примере облицовка прямоугольника соответствуют следующему рисунку (выступающие за границы прямоугольника части панелей не показаны):
Данная задача содержит семь подзадач. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
В правильном ответе величина сдвига \(s\) равна нулю, \(r\) и \(c\) не превосходят 20.
В правильном ответе величина сдвига \(s\) равна нулю, \(r\) и \(c\) не превосходят 200.
В правильном ответе величина сдвига \(s\) равна нулю, \(r\) и \(c\) не превосходят 1961.
Величина сдвига \(s\) произвольна, \(r\) и \(c\) не превосходят 20.
Величина сдвига \(s\) произвольна, \(r\) и \(c\) не превосходят 200.
Величина сдвига \(s\) произвольна, \(r\) и \(c\) не превосходят 500.
Величина сдвига \(s\) произвольна, \(r\) и \(c\) не превосходят 1961.
2 4 ABAB ABAB
1 2 0
5 7 DCADCAD BABBABB ADCADCA BBABBAB CADCADC
2 3 1
Участники олимпиады пришли в казанский театр на спектакль, где играют N неизвестных для них актеров. В фойе театра висят портреты всех актеров труппы, которая в полном составе задействована в спектакле. Портреты не подписаны. Зрителям раздали программки, в которых для каждого действия спектакля приводится список фамилий участвующих в нем актеров, но не указаны их роли. Театрал Виталий решил узнать, как выглядит каждый из актеров, упомянутых в программке. Для этого в антракте после каждого действия он выходил в фойе и сопоставлял портреты с увиденными актерами. Требуется написать программу, которая по заданному числу актеров N и списку фамилий актеров, участвующих в каждом из M действий, определяет номер действия, после которого впервые становится возможным установить соответствие между фамилией актера из программки и его портретом.
Первая строка входного файла содержит два натуральных числа N – число актеров и M – количество действий в спектакле (1 < N ≤ 100000, 1 ≤ M ≤ 100 000). В каждой из следующих M строк сначала записано количество актеров Ki, участвующих в i–ом действии (1 ≤ Ki ≤ N, K1 + K2 + ... + KM ≤ 100 000), а затем Ki различных натуральных чисел, не превосходящих N, обозначающих фамилии этих актеров. Соседние числа в каждой строке разделены пробелом.
Выходной файл должен содержать одну строку, состоящую из N записанных через пробел чисел. i-е число этой строки – это номер действия, после которого впервые становится возможным установить соответствие между i–м актером и его портретом. Если к концу спектакля установить соответствие между каким-либо актером и его портретом так и не удалось, то соответствующее число в строке должно быть равно нулю.
В первом примере три актера участвуют в спектакле с тремя действиями. В первом действии участвуют два актера с номерами 1 и 2. Так как актеров всего трое, то после первого акта становится понятно, какой портрет соответствует актеру с номером 3, поэтому третье число строки выходного файла равно 1. Во втором действии участвуют два актера с номерами 3 и 2. Поскольку только второй актер участвовал и в первом, и во втором действиях, то его портрет можно определить после второго действия. А так как портретов всего три, то после второго действия можно установить, что последний портрет соответствует актеру номер 1. Третье действие на ответ не влияет.
Данная задача содержит три подзадачи. Для оценки каждой подзадачи используется своя группа тестов. Баллы за подзадачу начисляются только в том случае, если все тесты из этой группы пройдены.
3 3 2 1 2 2 3 2 2 1 2
2 2 1
5 3 3 1 2 3 3 2 1 3 2 1 3
0 3 0 0 0
4 3 1 1 1 3 1 2
1 3 2 3