---> 151 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 24 25 26 27 28 29 30 >> Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

В одной школе издавна велись соревнования в информатической силе между классами одной параллели. По введённой учителями шкале информатическая сила класса — это суммарное количество задач, решённых всеми школьниками этого класса на последней районной олимпиаде. Соревновательный дух школы весьма высок, а значит, каждый участник решил хотя бы одну задачу.

В школьной летописи сохранились информатические силы двух классов, \(A\) и \(B\), а также количество задач на олимпиаде \(N\). Завучу, нашедшему летопись, очень хочется узнать, могло ли быть в первом классе больше учеников, чем во втором.

Напишите программу, которая определит, могло ли быть учеников в классе с информатической силой \(A\) больше, чем учеников в классе с информатической силой \(B\).

Входные данные

Вводятся три целых числа, каждое в своей строке — \(A\), \(B\), \(N\) (\(0 \le A, B \le 10 000, 1 \le N \le 10 000\)).

Выходные данные

Выведите «Yes», если в первом классе могло быть больше учеников, чем во втором, и «No», в противном случае.

Примечания

Тесты к этой задаче состоят из трех групп.

  • Тесты 1 – 3. Тесты из условия, оцениваются в ноль баллов.
  • Тесты 4 – 17. В тестах этой группы \(0 \le A, B \le 10, 1 \le N \le 10\). Эта группа оценивается в 30 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 18 – 30. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 70 баллов, баллы ставятся только при прохождении всех тестов группы.

Примеры
Входные данные
60
30
4
Выходные данные
Yes
Входные данные
30
30
1
Выходные данные
No
Входные данные
30
150
4
Выходные данные
No
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Настал декабрь, и вместе с ним пришло время готовиться к Новому Году. На острове рыцарей и лжецов этот праздник традиционно отмечается очень масштабно. Праздничный стол, новогодняя ёлка, конфетти и бенгальские огни — все готово к началу торжества.

Как вы знаете, на острове рыцарей и лжецов живут только два вида жителей — рыцари и лжецы. Рыцари никогда не лгут, так как этого им не позволяют их высокие моральные принципы. Лжецы же, наоборот, всегда говорят только неправду.

Важнейшей частью празднования Нового года является хоровод вокруг елки. Все приглашенные жители острова берутся за руки и движутся по кругу под музыку. Поскольку население острова весьма консервативно, то в этом году жители хотят выстроиться в круг в том же порядке, что и в прошлом. Однако данных о том, как был устроен хоровод, не сохранилось. Известно только, что каждый житель острова запомнил, кем были его соседи по хороводу (рыцарями или лжецами).

Опросив каждого человека, приглашенного на празднование, вы узнали, кем были их соседи по их словам (при этом лжецы говорят неправду про каждого соседа). Осталось только придумать какое-нибудь расположение жителей острова в круг так, чтобы их показания не противоречили друг другу.

Напишите программу, которая по списку жителей и их показаний определит, существует ли такое расположение или же выстроиться в хоровод как в прошлом году не получится.

Входные данные

В первой строке входных данных дано целое число n (2 ≤ n ≤ 105) — количество жителей на острове лжецов.

В следующих n строках даны целые числа li и ri (0 ≤ li, ri ≤ 1) — данные о соседях i-го человека. Если li = 0, то i-й житель утверждает, что его сосед по хороводу в направлении против часовой стрелки был лжецом, а если li = 1, то рыцарем. Аналогично, число ri содержит информацию о соседе по часовой стрелке.

Выходные данные

Требуется вывести «Yes», если существует способ выстроить людей по указанным правилам, или «No», если нет.

Примеры тестов

Входные данные
5
1 1
0 1
1 1
0 0
1 0
Выходные данные
Yes
Входные данные
2
0 0
1 1
Выходные данные
No

Примечание

Тесты к этой задаче состоят из четырёх групп.

  • Тесты 1 – 2. Тесты из условия, оцениваются в ноль баллов.
  • Тесты 3 – 10. На тесты этой группы накладывается ограничение n ≤ 10. Группа тестов оценивается в 20 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 11 – 26. На тесты этой группы накладывается ограничение n ≤ 20. Группа тестов оценивается в 25 баллов, баллы ставятся только при прохождении всех тестов группы.
  • Тесты 27 – 38. В тестах этой группы дополнительные ограничения отсутствуют. Группа оценивается в 55 баллов, баллы ставятся только при прохождении всех тестов группы.

В первом примере, можно выстроить жителей в порядке (2, 1, 3, 5, 4) по часовой стрелке. Показания всех людей будут сходиться в этом случае, например, когда четвертый житель будет рыцарем, а все остальные четыре человека — лжецами.

Во втором примере, очевидно, нельзя получить никакого решения, так как выстроить двух человек в хоровод можно лишь одним способом. Рассмотрим два случая: если первый человек — рыцарь, то, по его словам, второй человек — лжец, однако, из лживости его слов следует, что первый человек не рыцарь. С другой стороны, если первый человек — лжец, то из его показаний следует, что второй человек — рыцарь, но второй человек говорит, что первый — тоже рыцарь. Таким образом, поскольку в обоих случаях мы получили противоречие, не существует способа построить хоровод из имеющегося набора жителей.

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

На день рождения Егору подарили волшебный квадрат.

Волшебный квадрат — это таблица 3 × 3, в каждой из ячеек которой находятся числа от 0 до 9. Егор придумал следующую игру с волшебным квадратом: он загадывает число N и пытается так поставить числа в каждую ячейку квадрата, чтобы сумма чисел в каждой строке и каждом столбце была равна в точности N.

Пусть расстановка — это волшебный квадрат, заполненный числами. Тогда расстановки A и B считаются различными, если хотя бы для каких-то строки x и столбца y выполняется неравенство Ax, y ≠ Bx, y, где Ax, y и Bx, y — это числа, находящиеся в строке x и столбце y в расстановках A и B соответственно.

Егор задумался, сколько всего существует различных расстановок таких, что сумма в каждой строке и в каждом столбце была равна в точности N.

Напишите программу, которая поможет ответить на вопрос Егора.

Входные данные

Единственная строка входных данных содержит целое число N (0 ≤ N ≤ 109).

Выходные данные

Требуется вывести одно число — искомое количество расстановок.

Примеры тестов

Входные данные
0
Выходные данные
1

Примечание

В примере из условия существует всего одна допустимая расстановка — это таблица 3 × 3, состоящая из нулей. Очевидно, что сумма элементов в любой строке или столбце в такой расстановке равна 0.

ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

В одном известном всем городе скоро стартуют Зимние Олимпийские игры. В связи с этим организаторы игр решили провести эстафету Олимпийского огня — самую продолжительную и масштабную в истории Олимпийских игр. Эстафета состоит из N этапов, каждый длиной ai километров (1 ≤ i ≤ N). У организаторов имеется бесконечное количество олимпийских факелов, каждый из которых может непрерывно гореть на протяжении K километров забега. По правилам эстафеты каждый факел используется только один раз. В начале каждого этапа участникам эстафеты выдаётся некоторое число факелов, такое, чтобы олимпийский огонь удалось донести до конца этапа. По окончании этапа все использованные (полностью или частично) факелы передаются в дар своим факелоносцам.

В процессе подготовки эстафеты выяснилось, что последовательно идущие этапы можно объединить в один этап, и таким образом на проведение эстафеты потребуется меньше факелов. Однако по соображениям техники безопасности нельзя объединять больше, чем M подряд идущих этапов.

Напишите программу, которая по известной схеме эстафеты Олимпийского огня определяет, какое максимальное число факелов можно «сэкономить» и какие этапы для этого нужно объединить.

Входные данные

В первой строке заданы 3 натуральных числа N, M и K (N ≤ 106, M ≤ 10, K ≤ 108).

Во второй строке заданы N натуральных чисел ai (ai ≤ 109).

Выходные данные

В первой строке выведите одно натуральное число F — на сколько можно максимально сократить количество используемых факелов на протяжении всей эстафеты.

Во второй строке выведите одно натуральное число P — количество групп объединённых этапов.

Затем в P строках выведите сами группы — по 2 натуральных числа si и ci, где si — номер первого этапа в группе, а ci — количество этапов в группе. Все si должны идти в порядке возрастания, а ci не превосходить M. Если существует несколько оптимальных решений, разрешается вывести любое.

Примеры тестов

Входные данные
5 3 3
1 1 1 3 3
Выходные данные
2
1
1 3
Входные данные
6 3 3
1 1 1 1 1 1
Выходные данные
4
2
1 3
4 3
Входные данные
5 5 2
2 4 6 8 10
Выходные данные
0
0

ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

На межрегиональной олимпиаде по программированию роботов соревнования проводятся в один тур и в необычном формате. Задачи участникам раздаются последовательно, а не все в самом начале тура, и каждая \(i\)-я задача (1 ≤ \(i\) ≤ \(n\)) становится доступной участникам в свой момент времени \(s_i\). При поступлении очередной задачи каждый участник должен сразу определить, будет он ее решать или нет. В случае, если он выбирает для решения эту задачу, то у него есть \(t_i\) минут на то, чтобы сдать ее решение на проверку, причем в течение этого времени он не может переключиться на решение другой задачи. Если же участник отказывается от решения этой задачи, то в будущем он не может к ней вернуться. В тот момент, когда закончилось время, отведенное на задачу, которую решает участник, он может начать решать другую задачу, ставшую доступной в этот же момент, если такая задача есть, или ждать появления другой задачи. При этом за правильное решение \(i\)-й задачи участник получает \(c_i\) баллов.

Артур, представляющий на межрегиональной олимпиаде один из региональных центров искусственного интеллекта, понимает, что важную роль на такой олимпиаде играет не только умение решать задачи, но и правильный стратегический расчет того, какие задачи надо решать, а какие пропустить. Ему, как и всем участникам, до начала тура известно, в какой момент времени каждая задача станет доступной, сколько времени будет отведено на ее решение и сколько баллов можно получить за ее решение. Артур является талантливым школьником и поэтому сможет успешно решить за отведенное время и сдать на проверку любую задачу, которую он выберет для решения на олимпиаде.

Требуется написать программу, которая определяет, какое максимальное количество баллов Артур сможет получить при оптимальном выборе задач, которые он будет решать, а также количество и перечень таких задач.

Формат входного файла

Первая строка входного файла содержит одно целое число \(n\) (1 ≤ \(n\) ≤ \(10^5\)) количество задач на олимпиаде.

Последующие \(n\) строк содержат описания задач, по три числа на каждой строке: \(s_i\) момент появления \(i\)-й задачи в минутах, \(t_i\) время, отведенное на ее решение в минутах, и \(c_i\) сколько баллов получит участник за решение этой задачи (1 ≤ \(s_i\), \(t_i\), \(c_i\) ≤ \(10^9\)).

Формат выходного файла

Первая строка выходного файл должна содержать одно число – максимальное количество баллов, которое сможет получить Артур на олимпиаде.

Вторая строка должна содержать одно целое число \(m\) - количество задач, которые надо решить при оптимальном выборе.

Третья строка должна содержать \(m\) разделенных пробелом целых чисел - номера этих задач в порядке их решения. Задачи пронумерованы, начиная с единицы, в порядке их описания во входном файле.

Если оптимальных ответов несколько, необходимо вывести любой из них.

Пояснения к примерам

В первом примере Артур успевает решить все задачи и получить три балла.

Во втором примере Артуру выгоднее решать последнюю задачу и получить за нее три балла, чем решать только первые две и получить два балла.

Система оценивания

Частичные правильные решения для тестов, в которых все \(c_i\) одинаковы и \(n\) ≤ 1000, оцениваются из 30 баллов.

Частичные правильные решения для тестов, в которых все \(c_i\) одинаковы, оцениваются из 50 баллов.

Частичные правильные решения для тестов, в которых \(n\) ≤ 1000, оцениваются из 50 баллов.

Примеры
Входные данные
2
1 1 1
2 2 2
Выходные данные
3
2
1 2 
Входные данные
3
1 2 1
3 2 1
2 4 3
Выходные данные
3
1
3 

Страница: << 24 25 26 27 28 29 30 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест