---> 151 задач <---
Источники --> Личные олимпиады --> Всероссийская олимпиада школьников
    Муниципальный этап(80 задач)
    Окружная олимпиада(18 задач)
    Региональный этап(109 задач)
    Заключительный этап(97 задач)
Страница: << 4 5 6 7 8 9 10 >> Отображать по:

Циклическим сдвигом строки s0s1sn-1 на k позиций назовем строку sksk+1sns1..sk-1. Например, циклическим сдвигом строки «abcde» на две позиции является строка «cdeab». В этой задаче далее будут рассматриваться только строки, состоящие из десятичных цифр от 0 до 9. Произвольной такой строке, первый символ которой не является нулем, можно сопоставить число, десятичной записью которого она является. Строкам, которые начинаются с нуля, никакое число сопоставляться не будет. Например, строке 123 сопоставляется число сто двадцать три, а строке 0123 не сопоставляется никакое число.

Пусть заданы две строки: s и t. Обозначим как S набор всех циклических сдвигов строки s, а как T – набор всех циклических сдвигов строки t. Например, если = «1234», то S содержит строки «1234», «2341», «3412», «4123». Обозначим также как NUM(A) набор чисел, соответствующих строкам из набора  A.

Требуется написать программу, которая по строкам s и t определит, максимальное число, представимое в виде разности (xy), где x принадлежит NUM(S), а y принадлежит NUM(T). Например, если s = «25», t = «12», то NUM(S) содержит числа 25 и 52, NUM(T) – числа 12 и 21; их попарными разностями будут: 2512 = 13, 2521 = 4, 5212 = 40, 5221 = 31. Из этих разностей максимальным числом является 40.

Входные данные

Первая строка входного файла содержит строку s, вторая строка входного файла – строку t. Обе строки непустые. Они содержат только цифры, из которых хотя бы одна не является нулем. Строки имеют длину не более 3000 символов.

Выходные данные

В выходной файл выведите искомое число без ведущих нулей.

Примеры
Входные данные
25
12
Выходные данные
40
Входные данные
100
1
Выходные данные
99
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Движением плоскости называют такое преобразование плоскости, которое сохраняет попарные расстояния между точками, то есть если A1 и B1 – образы некоторых точек A и B при движении, то |A1B1| = |AB|.

Одной из разновидностей движения плоскости является скользящая симметрия. Скользящей симметрией называют композицию симметрии относительно некоторой прямой l и переноса на вектор, параллельный l (этот вектор может быть нулевым). На рисунке показан пример применения скользящей симметрии к отрезку.

 

Известно, что любой отрезок можно перевести в любой другой отрезок такой же длины с помощью скользящей симметрии.

Требуется по координатам двух различных точек A и B и двух точек A1 и B1, находящихся на таком же расстоянии друг от друга, как и точки A и B, найти скользящую симметрию, переводящую точку A в точку A1, а точку B в точку B1.

Входные данные

В первой строке входного файла находятся четыре целых числа – координаты двух различных точек A и В. Во второй строке также находятся четыре целых числа – координаты двух различных точек A1 и В1. Гарантируется, что |A1B1| = |AB|. Все числа во входном файле по модулю не превышают 1000. Числа в строках разделены пробелом.

Выходные данные

Выведите в выходной файл описание искомой скользящей симметрии, которое представляется в следующем виде.

В первой строке должны выводиться координаты двух различных точек, лежащих на прямой l, относительно которой выполняется симметрия, а во второй – координаты вектора, параллельного этой прямой, на который осуществляется перенос. Вещественные числа должны быть представлены не менее чем с 6 знаками после десятичной точки.

Примеры
Входные данные
1 1 3 2
-1 1 -3 2
Выходные данные
0.000000 0.000000 0.000000 1.000000
0.000000 0.000000
Входные данные
1 1 3 1
3 -1 5 -1
Выходные данные
0.000000 0.000000 1.000000 0.000000
2.000000 0.000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Игра в трехмерный тетрис происходит на поле, имеющем вид прямоугольного параллелепипеда размером W×D×H единичных кубиков. Введем координатную систему так, чтобы один из углов параллелепипеда находится в точке (0, 0, 0), противоположный ему – в точке (W, D, H), а ребра параллелепипеда были параллельны осям координаты. Каждый единичный кубик поля можно задать максимальными координатами его углов, тогда кубики будут иметь координаты от (1, 1, 1) до (W, D, H).

В процессе игры на поле последовательно появляются фигуры. Каждая фигура представляет собой множество единичных кубиков и обладает следующим свойством: от любого кубика можно добраться до любого другого, переходя через общую грань.

Игрок может сделать несколько действий с фигурой. Каждое действие является либо перемещением ее на один в направлении одной из осей координат, либо поворотом ее на 90 градусов вокруг одной из координатных осей. Один из кубиков в фигуре является базовым – при поворотах он остается на месте. При повороте фигура сначала исчезает с игрового поля, и затем появляется снова, уже в новом положении. Направления поворотов показаны на рисунке, при повороте вокруг оси OX ось OY переходит в ось OZ, при повороте вокруг оси OY ось OZ переходит в ось OX, при повороте вокруг оси OZ ось OX переходит в ось OY. Базовый кубик при повороте остается на месте.

 

Требуется написать программу модуля, ответственного за определение кубиков, которые в результате игры окажутся заняты фигурами. Заранее известна последовательность появления фигур на поле и действия с этими фигурами, которые произвел игрок. Гарантируется, что каждое из действий допустимо, то есть не происходит выхода фигуры за границу поля, и не происходит появления у двух фигур общего кубика.

Входные данные

В первой строке входного файла содержатся размеры игрового поля – три целых числа W, D и H (1 W, H, D100).

Во второй строке входного файла задано целое число n – количество фигур, которые были размещены на игровом поле. (0n100). Каждая фигура задается следующим образом: на первой строке задано натуральное число m - количество кубиков в фигуре. (1m100) Далее следуют m строка, в i-й из которых содержится тройка целых чисел xi, yi, zi – координаты i-го кубика в фигуре в ее начальном положении. Базовый кубик описывается первым.

Следующая строка содержит целое число kколичество операций, которые были проведены игроком с данной фигурой (0k100). Далее следуют k строк. Каждая из них начинается либо со слова «shift», либо со слова «rotate».

В первом случае далее следует одна из букв «x», «y» или «z», обозначающая, вдоль какой из осей был выполнен сдвиг, после чего через пробел идет либо символ «+», если сдвиг был осуществлен в положительном направлении данной оси, либо «–», если сдвиг был осуществлен в отрицательном направлении.

Если же строка начинается со слова «rotate», то далее идет одна из букв «x», «y» или «z», обозначающая, вокруг какой из осей был выполнен поворот.

Выходные данные

Выведите в выходной файл в произвольном порядке координаты всех кубиков, которые будут заняты фигурами. На каждой строке должно содержаться три числа, разделенных пробелом – координаты кубика в формате «x y z».

Примеры
Входные данные
2 2 2
1
2
1 1 1
2 1 1
1
shift z +
Выходные данные
2 1 2
1 1 2
Входные данные
3 3 3
1
4
2 2 2
3 2 2
2 3 2
2 2 3
2
rotate y
rotate z
Выходные данные
2 2 2
2 3 2
2 2 1
1 2 2
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

На координатной плоскости расположены равнобедренный прямоугольный треугольник ABC с длиной катета d и точка X. Катеты треугольника лежат на осях координат, а вершины расположены в точках: A (0,0), B (d,0), C (0,d).

Напишите программу, которая определяет взаимное расположение точки X и треугольника. Если точка X расположена внутри или на сторонах треугольника, выведите 0. Если же точка находится вне треугольника, выведите номер ближайшей к ней вершины.

Входные данные

Сначала вводится натуральное число d(не превосходящее 1000), а затем координаты точки X – два целых числа из диапазона от ­–1000 до 1000.

Выходные данные

Если точка лежит внутри, на стороне треугольника или совпадает с одной из вершин, то выведите число 0. Если точка лежит вне треугольника, то выведите номер вершины треугольника, к которой она расположена ближе всего (1 – к вершине A, 2 – к B, 3 – к C). Если точка расположена на одинаковом расстоянии от двух вершин, выведите ту вершину, номер которой меньше.

Комментарии к примерам тестов

1. Точка лежит внутри треугольника.

2. Точка лежит вне треугольника и ближе всего к ней вершина A

3. Точка лежит на равном расстоянии от вершин B и C,в этом случае нужно вывести ту вершину, у которой номер меньше, т.е. выведено должно быть число 2

4. Точка лежит на стороне треугольника.

Примеры
Входные данные
5
1 1
Выходные данные
0
Входные данные
3
-1 -1
Выходные данные
1
Входные данные
4
4 4
Выходные данные
2
Входные данные
4
2 2
Выходные данные
0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Даны двухчашечные весы и набор гирек. На левую чашу весов положили взвешиваемый предмет весом K граммов. Можно ли привести весы в состояние равновесия, и если можно, то определите для каждой чаши весов, какие гирьки на нее для этого нужно положить. Имеющиеся гирьки разрешается класть на любую из чаш весов (каждая гирька имеется только в одном экземпляре, некоторые гирьки можно не использовать).

Входные данные

Вводится сначала K — вес предмета, который положили на левую чашу (1≤K≤50). Далее записано общее количество гирек N (1≤N≤10). Далее записано N различных натуральных чисел, не превышающих 50, — веса гирек.

Выходные данные

В первой строке выведите веса гирек, которые нужно поместить на левую чашу весов, во второй строке — гирьки, которые нужно поместить на правую чашу. Если на какую-то чашу ни одной гирьки помещать не нужно — выведите в этой строке число 0. Если с помощью данных гирек привести весы в равновесие нельзя, выведите одно число –1. Если вариантов несколько, выведите любой из них.

Примеры
Входные данные
5
2
3 5
Выходные данные
0
5
Входные данные
5
3
6 3 4
Выходные данные
4
3 6
Входные данные
5
1
2
Выходные данные
-1

Страница: << 4 5 6 7 8 9 10 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест