Окружная олимпиада(18 задач)
Региональный этап(109 задач)
Заключительный этап(97 задач)
На планете в звездной системе Альфа Кентавра неделя состоит из A дней, а год - из B дней. Годы нумеруются последовательными натуральными числами: 1, 2, 3, ... Кроме того, годы с номерами C1, C2, ..., CN являются високосными и состоят из (B+1) дней. В году дни с номерами D1, D2, ..., DM являются праздничными. Если праздник попадает на (B+1)-й день года, то он отмечается только в високосные годы. Первый день первого года является первым днем недели.
Один из жителей планеты решил устроиться на новую работу. В соответствии с заключенным трудовым договором он будет числиться на данной работе в течение E дней, начиная с первого дня 1-го года. По договору он имеет право выбрать один день недели (с 1 по A), который будет для него выходным. Праздничные дни также считаются нерабочими. Житель хочет выбрать себе выходной день таким образом, чтобы за период действия договора у него было максимальное количество нерабочих дней.
Требуется написать программу, которая определяет искомый день недели и вычисляет соответствующее количество нерабочих дней.
В первой строке входного файла через пробел записаны числа A и B - количество дней в неделе и в невисокосном году соответственно (1 ≤ A ≤ 2500, 1 ≤ B ≤ 10000). Во второй строке записано число N - количество високосных лет, и в третьей - номера C1, C2, ..., CN високосных лет в возрастающем порядке (0 ≤ N ≤ 5000, 1 ≤ C1 < C2 < ... < CN ≤ 107). В следующей строке число M - количество праздничных дней в году, и на новой строке - D1, D2, ..., DM в возрастающем порядке (1 ≤ D1 < D2 < ... < DM ≤ B+1). В последней строке записано число E (1 ≤ E ≤ 109). Известно, что житель заключил контракт не более чем на 107 лет.
В выходной файл выведите через пробел два числа - номер дня недели, который выгоднее всего сделать выходным, и соответствующее количество нерабочих дней за период действия договора. Если ответов несколько, то выведите любой из них.
7 13 1 2 2 1 14 29
1 8
Одна из базовых задач компьютерной графики – обработка черно-белых изображений. Изображения можно представить в виде прямоугольников шириной w и высотой h, разбитых на w×h единичных квадратов, каждый из которых имеет либо белый, либо черный цвет. Такие единичные квадраты называются пикселами. В памяти компьютера сами изображения хранятся в виде прямоугольных таблиц, содержащих нули и единицы.
Во многих областях очень часто возникает задача комбинации изображений. Одним из простейших методов комбинации, который используется при работе с черно-белыми изображениями, является попиксельное применение некоторой логической операции. Это означает, что значение пиксела результата получается применением этой логической операции к соответствующим пикселам аргументов. Логическая операция от двух аргументов обычно задается таблицей истинности, которая содержит значения операции для всех возможных комбинаций аргументов. Например, для операции «исключающее ИЛИ» эта таблица выглядит так.
Первый аргумент | Второй аргумент | Результат |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Требуется написать программу, которая вычислит результат попиксельного применения заданной логической операции к двум черно-белым изображениям одинакового размера.
Первая строка входного файла содержит два целых числа w и h (1 ≤ w, h ≤ 100). Последующие h строк описывают первое изображение и каждая из этих строк содержит w символов, каждый из которых равен нулю или единице. Далее следует описание второго изображения в аналогичном формате. Последняя строка входного файла содержит описание логической операции в виде четырех чисел, каждое из которых – ноль или единица. Первое из них есть результат применения логической операции в случае, если оба аргумента – нули, второе – результат в случае, если первый аргумент – ноль, второй – единица, третье – результат в случае, если первый аргумент – единица, второй – ноль, а четвертый – в случае, если оба аргумента – единицы.
В выходной файл необходимо вывести результат применения заданной логической операции к изображениям в том же формате, в котором изображения заданы во входном файле.
Разбалловка для личной олимпиады
Тест 1 — из условия. Оценивается в 0 баллов.
Тесты 2-26 — дополнительных ограничений нет. Группа тестов оценивается в 100 баллов.
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.
5 3 01000 11110 01000 10110 00010 10110 0110
11110 11100 11110
Фермер Иван с юности следит за своим газоном. Газон можно считать плоскостью, на которой в каждой точке с целыми координатами растет один пучок травы.
В одно из воскресений Иван воспользовался газонокосилкой и постриг некоторый прямоугольный участок газона. Стороны этого участка параллельны осям координат, а две противоположные вершины расположены в точках (x1, y1) и (x2, y2). Следует отметить, что пучки травы, находящиеся на границе этого прямоугольника, также были пострижены.
Довольный результатом Иван купил и установил на газоне дождевальную установку. Она была размещена в точке с координатами (x3, y3) и имела радиус действия струи r. Таким образом, установка начала поливать все пучки, расстояние от которых до точки (x3, y3) не превышало r.
Все было хорошо, но Ивана заинтересовал следующий вопрос: сколько пучков травы оказалось и пострижено, и полито в это воскресенье?
Требуется написать программу, которая позволит дать ответ на вопрос Ивана.
В первой строке входного файла содержатся четыре целых числа x1, y1, x2, y2 (−100 000 ≤ x1 < x2 ≤ 100 000; −100 000 ≤ y1 < y2 ≤ 100 000).
Во второй строке входного файла содержатся три целых числа x3, y3, r (−100 000 ≤ x3, y3 ≤ 100 000; 1 ≤ r ≤ 100 000)
В выходной файл необходимо вывести одно целое число — число пучков травы, которые были и пострижены, и политы.
Иллюстрация к примеруРазбалловка для личной олимпиады
Тест 1 — из условия. Оценивается в 0 баллов.
Тесты 2-21 — дополнительных ограничений нет. Группа тестов оценивается в 100 баллов.
Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп.
0 0 5 4 4 0 3
14
Миша уже научился хорошо фотографировать и недавно увлекся программированием. Первая программа, которую он написал, позволяет формировать негатив чёрно-белого изображения.
Бинарное чёрно-белое изображение — это прямоугольник, состоящий из пикселей, каждый из которых может быть либо чёрным, либо белым. Негатив такого изображения получается путём замены каждого чёрного пикселя на белый, а каждого белого пикселя — на чёрный.
Миша, как начинающий программист, написал свою программу с ошибкой, поэтому в результате её исполнения мог получаться некорректный негатив. Для того чтобы оценить уровень несоответствия получаемого негатива исходному изображению, Миша начал тестировать свою программу.
В качестве входных данных он использовал исходные изображения. Сформированные программой негативы он начал тщательно анализировать, каждый раз определяя число пикселей негатива, которые получены с ошибкой.
Требуется написать программу, которая в качестве входных данных использует исходное бинарное чёрно-белое изображение и полученный Мишиной программой негатив, и на основе этого определяет количество пикселей, в которых допущена ошибка.
Первая строка входного файла содержит целые числа \(n\) и \(m\) (\(1\le n,m\le100\)) — высоту и ширину исходного изображения (в пикселях).
Последующие \(n\) строк содержат описание исходного изображения. Каждая строка состоит из \(m\) символов «B» и «W». Символ «B» соответствует чёрному пикселю, а символ «W» — белому.
Далее следует пустая строка, а после неё — описание выведенного Мишиной программой изображения в том же формате, что и исходное изображение.
В выходной файл необходимо вывести число пикселей негатива, которые неправильно сформированы Мишиной программой.
3 4 WBBW BBBB WBBW BWWW WWWB BWWB
2
2 2 BW BB WW BW
2
Победитель школьного этапа олимпиады по информатике нашел дома в старых бумагах результаты чемпионата страны по стрельбе из лука, в котором участвовал его папа. К сожалению, листок с результатами сильно пострадал от времени, и разобрать фамилии участников было невозможно. Остались только набранные каждым участником очки, причем расположились они в том порядке, в котором участники чемпионата выполняли стрельбу.
Расспросив папу, школьник выяснил, что количество очков, которое набрал папа, заканчивается на 5, один из победителей чемпионата стрелял раньше, а папин друг, который стрелял сразу после папы, набрал меньше очков. Теперь он заинтересовался, какое самое высокое место мог занять его папа на том чемпионате.
Будем считать, что участник соревнования занял \(k\)-е место, если ровно \((k - 1)\) участников чемпионата набрали строго больше очков, чем он. При этом победителями считались все участники чемпионата, занявшие первое место.
Требуется написать программу, которая по заданным результатам чемпионата определяет, какое самое высокое место на чемпионате мог занять папа победителя школьного этапа олимпиады по информатике.
Первая строка входного файла содержит целое число \(n\) — количество участников чемпионата страны по стрельбе (\(3 \le n \le 10^5\)).
Вторая строка входного файла содержит \(n\) положительных целых чисел, каждое из которых не превышает 1000, — очки участников чемпионата, приведенные в том порядке, в котором они выполняли стрельбу.
В выходном файле должно содержаться одно целое число — самое высокое место, которое мог занять папа школьника. Если не существует ни одного участника чемпионата, который удовлетворяет, описанным выше условиям, выведите в выходной файл число 0.
Правильные решения для тестов, в которых \(1 \le n \le 1000\), оцениваются из 50 баллов.
7 10 20 15 10 30 5 1
6
3 15 15 10
1