---> 6 задач <---
    2009(8 задач)
    2010(8 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(8 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
    Московская областная олимпиада(13 задач)
    Кировская открытая областная олимпиада(21 задач)
    Санкт-Петербург(3 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

К 2110 году город Флэтбург, являясь одним из крупнейших городов мира, не имеет обходной автомагистрали, что является существенным препятствием для его развития как крупнейшего транспортного центра мирового значения. В связи с этим ещё в 2065 году при разработке Генерального плана развития Флэтбурга была определена необходимость строительства кольцевой автомобильной дороги.

В Генеральном плане также были обозначены требования к этой дороге. Она должна соответствовать статусу кольцевой — иметь форму окружности. Кроме этого, четыре крупные достопримечательности Флэтбурга должны быть в одинаковой транспортной доступности от дороги. Это предполагается обеспечить тем, что они будут находиться на равном расстоянии от неё. Расстоянием от точки расположения достопримечательности до дороги называется наименьшее из расстояний от этой точки до некоторой точки, принадлежащей окружности автодороги.

Дирекция по строительству города Флэтбурга, ответственная за постройку кольцевой автодороги, решила привлечь передовых программистов для выбора оптимального плана постройки дороги.

Требуется написать программу, которая вычислит число возможных планов постройки кольцевой автомобильной дороги с соблюдением указанных требований и найдёт такой план, для которого длина дороги будет минимальной. Гарантируется, что хотя бы один план постройки существует.

Входные данные

Входной файл содержит четыре строки. Каждая из них содержит по два целых числа: \(x_i\) и \(y_i\) — координаты места расположения достопримечательности. Первая строка описывает первую достопримечательность, вторая — вторую, третья — третью, четвёртая — четвёртую. Никакие две достопримечательности не находятся в одной точке.

Все числа во входном файле не превосходят 100 по абсолютной величине.

Выходные данные

В первой строке выходного файла требуется вывести число возможных планов постройки кольцевой автомобильной дороги. Если таких планов бесконечно много, необходимо вывести в первой строке выходного файла слово Infinity.

На второй строке требуется вывести координаты центра дороги минимальной длины и её радиус. Если существует несколько разных способов построения дороги минимальной длины, необходимо вывести координаты центра и радиус любой из них. Координаты центра и радиус должны быть выведены с точностью не хуже \(10^{-5}\) и не должны превышать \(10^9\). Гарантируется, что существует хотя бы один план с такими параметрами.

Примеры
Входные данные
0 0
0 1
1 0
2 2
Выходные данные
7
1.5 0.5 1.14412281
Входные данные
0 0
0 1
1 0
1 1
Выходные данные
Infinity
0.5 0.5 0.0
ограничение по времени на тест
4.0 second;
ограничение по памяти на тест
64 megabytes

В наши дни предоставление поверхностей заборов и стен промышленных зданий рекламодателям — уже не оригинальный способ получить дополнительный заработок, а нечто само собой разумеющееся.

Небольшая компания «Домострой» также решила выйти на этот рынок и стала предлагать место для рекламы на своих блоках заборов. Блок представляет собой параллелепипед размером \(1\times1\times L\), на одной из сторон которого есть место для рекламы — пространство размера \(1\times L\), в которое можно вписать ровно \(L\) букв латинского алфавита.

К сожалению, иногда сделки у компании срывались, и заранее подготовленные блоки с рекламой отправлялись на склад. Со временем там скопилось приличное количество блоков различных типов (блоки разных типов отличаются друг от друга только надписью), поэтому было решено использовать их вторично.

Была предложена следующая идея: если поставить несколько блоков друг на друга и закрасить ненужные буквы, то, читая сверху вниз и слева направо, можно будет прочитать какой-нибудь другой текст, как показано на рисунке.

Таким образом, можно получить рекламную надпись для нового клиента. При этом из эстетических соображений при прочтении конечной надписи разрывы в виде закрашенных букв недопустимы.

После того, как некоторое число \(K\) блоков, каждый из которых имеет длину \(L\), поставили друг на друга, получилась прямоугольная таблица размером \(K\times L\), в каждой клетке которой находится буква латинского алфавита. Каждый рекламный блок соответствует строке этой таблицы. Теперь содержимое этой таблицы выписывается по столбцам, начиная с самого левого. При этом в каждом столбце буквы выписываются сверху вниз. В случае, изображённом на рисунке, в результате этого процесса получилась бы строка «TOEIIZENITKN». Необходимо, чтобы рекламная надпись, требуемая заказчику, входила в получившуюся строку как подстрока «TOEIIZENITKN».

Требуется написать программу, которая будет определять, какое минимальное количество блоков надо использовать, чтобы получить рекламную надпись, необходимую заказчику. При этом можно считать, что на складе блоков каждого типа неограниченно много.

Входные данные

Первая строка входного файла содержит два натуральных числа \(N\) и \(L\) — число различных типов блоков на складе и длина каждого блока соответственно (\(1\le N\le100\), \(1\le L\le100\)). Последующие \(N\) строк содержат по одной записи длиной \(L\), состоящей из строчных латинских букв — надписи на блоках соответствующего типа. Надписи на блоках разных типов не совпадают.

Последняя строка входного файла содержит новую рекламную надпись \(s\) — строку, состоящую только из строчных латинских букв (\(1\le|s|\le200\)). Можно считать, что на складе находится неограниченное число блоков каждого типа.

Выходные данные

В первой строке выходного файла необходимо вывести натуральное число \(K\) — минимальное количество блоков, которое нужно использовать для составления новой рекламы. Следующая строка должна содержать \(K\) чисел — номера типов блоков, которые нужно для этого использовать, перечисляя их сверху вниз. Типы блоков нумеруются с единицы в порядке их задания во входном файле.

Если ответов несколько, выведите любой из них. Если решения не существует, выведите в выходной файл число \(-1\).

Примеры
Входные данные
3 4
tiet
oink
ezin
zenit
Выходные данные
3
1 2 3
Входные данные
2 11
sillysample
happysample
sam
Выходные данные
1
2
Входные данные
2 3
baa
aab
bb
Выходные данные
2
2 2
Входные данные
2 3
aaa
bbb
cc
Выходные данные
-1
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Впервые в жизни Петя летит на международную олимпиаду по программированию. Петя так волновался, что взял с собой множество вещей и теперь во время регистрации на рейс его чемодан не принимают, так как у него превышение разрешенной массы багажа.

У Пети в чемодане лежат N предметов, каждый предмет имеет свой вес Wi килограмм и ценность Ai рублей, причем оказалось так, что для любого предмета выполняется следующее неравенство:

W1 + W2 + … + Wi-1 Wi

Пете сообщили, что у него перевес чемодана в M килограмм, поэтому ему придется оставить в аэропорту какие-то предметы с суммарной массой не меньше M. При этом Петя хочет понести минимальный урон, а поэтому оставленные предметы должны иметь наименьшую возможную стоимость.

Требуется написать программу, которая подсчитает минимальную возможную стоимость оставленных предметов.

Входные данные

В первой строке задаётся количество предметов в багаже у Пети N (1 ≤ N 50) и какой у Пети перевес чемодана в килограммах M (1 M 1018). Во второй строке задаются N целых неотрицательных чисел – вес всех вещей Wi, сумма чисел не превышает 1018. В третьей строке заданы N целых неотрицательных чисел – ценность всех вещей Ai , все числа не превышают 109.

Выходные данные

В выходной файл требуется вывести минимальную суммарную стоимость предметов, которые Петя будет вынужден оставить в аэропорту.

Ввод
Вывод
4 15
5 10 15 30
1 5 3 6
3
3 2
1 2 4
7 6 5
5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Натуральное число \(a\) называется делителем натурального числа \(b\), если \(b = ac\) для некоторого натурального числа \(c\). Например, делителями числа 6 являются числа 1, 2, 3 и 6. Два числа называются взаимно простыми, если у них нет общих делителей кроме 1. Например, 16 и 27 взаимно просты, а 18 и 24 — нет.

Будем называть нормальным набор из \(k\) чисел (\(a_1, a_2, \ldots, a_k\)), если выполнены следующие условия:

  1. каждое из чисел \(a_i\) является делителем числа \(n\);
  2. выполняется неравенство \(a_1 \lt a_2 \lt \ldots \lt a_k\);
  3. числа \(a_i\) и \(a_{i+1}\) для всех \(i\) от \(1\) до \(k - 1\) являются взаимно простыми;
  4. произведение \(a_1a_2\ldots a_k\) не превышает \(n\).

Например, набор (2, 9, 10) является нормальным набором из 3 делителей числа 360.

Требуется написать программу, которая по заданным значениям \(n\) и \(k\) определяет количество нормальных наборов из \(k\) делителей числа \(n\).

Входные данные

Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(2 \le n \le 10^8\), \(2 \le k \le 10\)).

Выходные данные

В выходном файле должно содержаться одно число — количество нормальных наборов из \(k\) делителей числа \(n\).

Примечание

Правильные решения для тестов, в которых \(n \le 1000\) и \(k = 2\), оцениваются из 30 баллов.

Правильные решения для тестов, в которых \(k = 2\), оцениваются из 60 баллов (в эти баллы включаются также 30 баллов для случая \(n \le 1000\), \(k = 2\)).

Примеры
Входные данные
90 3
Выходные данные
16
Входные данные
10 2
Выходные данные
4
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Формат XML является распространенным способом обмена данными между различными программами. Недавно программист Иванов написал небольшую программу, которая сохраняет некоторую важную информацию в виде XML-строки.

XML-строка состоит из открывающих и закрывающих тегов.

Открывающий тег начинается с открывающей угловой скобки (<), за ней следует имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка (>). Примеры открывающих тегов: <a>, <dog>.

Закрывающий тег начинается с открывающей угловой скобки, за ней следует прямой слеш (/), затем имя тега — непустая строка из строчных букв латинского алфавита, а затем закрывающая угловая скобка. Примеры закрывающихся тегов: </a>, </dog>.

XML-строка называется корректной, если она может быть получена по следующим правилам:

  • Пустая строка является корректной XML-строкой.
  • A и B — корректные XML-строки, то строка AB, получающаяся приписыванием строки B в конец строки A, также является корректной XML-строкой.
  • Если A — корректная XML-строка, то строка <X>A</X>, получающаяся приписыванием в начало A открывающегося тега, а в конец — закрывающегося с таким же именем, также является корректной XML-строкой. Здесь X — любая непустая строка из строчных букв латинского алфавита.

Например, представленные ниже строки:

<a></a>

<a><ab></ab><c></c></a>

<a></a><a></a><a></a>

являются корректными XML-строками, а такие строки как:

<a></b>

<a><b>

<a><b></a></b>

не являются корректными XML-строками.

Иванов отправил файл с сохраненной XML-строкой по электронной почте своему коллеге Петрову. Однако, к сожалению, файл повредился в процессе пересылки: ровно один символ в строке заменился на некоторый другой символ.

Требуется написать программу, которая по строке, которую получил Петров, восстановит исходную XML-строку, которую отправлял Иванов.

Входные данные

Входной файл содержит одну строку, которая заменой ровно одного символа может быть превращена в корректную XML-строку. Длина строки лежит в пределах от 7 до 1000, включительно. Строка содержит только строчные буквы латинского алфавита и символы «<» (ASCII код 60), «>»(ASCII код 62) и «/»(ASCII код 47).

Строка во входном файле заканчивается переводом строки.

Выходные данные

Выходной файл должен содержать корректную XML-строку, которая может быть получена из строки во входном файле заменой ровно одного символа на другой. Если вариантов ответа несколько, можно вывести любой.

Примеры входных и выходных файлов

input

output

<a></b>

<a></a>

<a><aa>

<a></a>

<a><>a>

<a></a>

<a/</a>

<a></a>



Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест