2010(8 задач)
2011(8 задач)
2012(8 задач)
2013(8 задач)
2014(8 задач)
2015(8 задач)
2016(8 задач)
2017(8 задач)
Московская областная олимпиада(13 задач)
Кировская открытая областная олимпиада(21 задач)
Санкт-Петербург(3 задач)
Впервые в жизни Петя летит на международную олимпиаду по программированию. Петя так волновался, что взял с собой множество вещей и теперь во время регистрации на рейс его чемодан не принимают, так как у него превышение разрешенной массы багажа.
У Пети в чемодане лежат N предметов, каждый предмет имеет свой вес Wi килограмм и ценность Ai рублей, причем оказалось так, что для любого предмета выполняется следующее неравенство:
W1 + W2 + … + Wi-1 ≤ Wi
Пете сообщили, что у него перевес чемодана в M килограмм, поэтому ему придется оставить в аэропорту какие-то предметы с суммарной массой не меньше M. При этом Петя хочет понести минимальный урон, а поэтому оставленные предметы должны иметь наименьшую возможную стоимость.
Требуется написать программу, которая подсчитает минимальную возможную стоимость оставленных предметов.
В первой строке задаётся количество предметов в багаже у Пети N (1 ≤ N ≤ 50) и какой у Пети перевес чемодана в килограммах M (1 ≤ M ≤ 1018). Во второй строке задаются N целых неотрицательных чисел – вес всех вещей Wi, сумма чисел не превышает 1018. В третьей строке заданы N целых неотрицательных чисел – ценность всех вещей Ai , все числа не превышают 109.
В выходной файл требуется вывести минимальную суммарную стоимость предметов, которые Петя будет вынужден оставить в аэропорту.
Ввод | Вывод |
|
|
|
|
Натуральное число \(a\) называется делителем натурального числа \(b\), если \(b = ac\) для некоторого натурального числа \(c\). Например, делителями числа 6 являются числа 1, 2, 3 и 6. Два числа называются взаимно простыми, если у них нет общих делителей кроме 1. Например, 16 и 27 взаимно просты, а 18 и 24 — нет.
Будем называть нормальным набор из \(k\) чисел (\(a_1, a_2, \ldots, a_k\)), если выполнены следующие условия:
Например, набор (2, 9, 10) является нормальным набором из 3 делителей числа 360.
Требуется написать программу, которая по заданным значениям \(n\) и \(k\) определяет количество нормальных наборов из \(k\) делителей числа \(n\).
Первая строка входного файла содержит два целых числа: \(n\) и \(k\) (\(2 \le n \le 10^8\), \(2 \le k \le 10\)).
В выходном файле должно содержаться одно число — количество нормальных наборов из \(k\) делителей числа \(n\).
Правильные решения для тестов, в которых \(n \le 1000\) и \(k = 2\), оцениваются из 30 баллов.
Правильные решения для тестов, в которых \(k = 2\), оцениваются из 60 баллов (в эти баллы включаются также 30 баллов для случая \(n \le 1000\), \(k = 2\)).
90 3
16
10 2
4