Задача №608. Витрина

Олимпиада завершена. Режим дорешивания.

Зал супермаркета имеет форму прямоугольника размером \(M\) x \(N\), в котором расставлены витрины размером 1 x 1. Стороны витрин параллельны стенам супермаркета, а расстояния от витрин до стен – целые числа.

В супермаркет привезли новую супервитрину размером \(K\) x 1 и выгрузили в одном из углов супермаркета. Требуется передвинуть ее в противоположный угол супермаркета. При этом ее нельзя поворачивать, а можно лишь передвигать параллельно стенам супермаркета. Напишите программу, которая по плану супермаркета поможет определить, какое наименьшее количество витрин нужно убрать, чтобы передвинуть супервитрину.

Входные данные

В первой строке вводятся три натуральных числа \(M\), \(N\) и \(K\) (\(M\), \(N\) ≤ 100, \(K\)\(M\)). Начальное и конечное расположение супервитрины такие, как указано на верхнем рисунке. В следующей строке записано целое неотрицательно число \(V\) – количество витрин (0 ≤ \(V\)\(N\)*\(M\)). В следующих \(V\) строках входных данных содержатся различные пары целых неотрицательных чисел, характеризующие положения витрин. Первое число (от 0 до \(M\)–1) – расстояние от левой стены супермаркета до витрины, второе (от 0 до \(N\)–1) – расстояние от нижней стены до витрины (см. нижний рисунок). Гарантируется, что там, где изначально поставили супервитрину, других витрин нет.

Выходные данные

В первой строке выведите минимальное количество витрин, которые необходимо убрать. Во второй строке выведите возможный маршрут передвижения супервитрины: одну строку из заглавных латинских букв, обозначающих следующее:

U – на 1 вверх,
D – на 1 вниз,
L – на 1 влево,
R – на 1 вправо.
Количество символов в строке не должно превышать \(N\) x \(M\).

Если возможных маршрутов несколько, то выведите любой из них.

Примеры
Входные данные
10 10 5
0
Выходные данные
0
RUURUURUURUURU
Входные данные
9 3 2
4
2 0
5 1
5 2
8 2
Выходные данные
1
URRRDRRRRUU
Сдать: для сдачи задач необходимо войти в систему