Задача №111796. LCA
Задано подвешенное дерево, содержащее n (1 ≤ n ≤ 100000) вершин, пронумерованных от 0 до n - 1. Требуется ответить на m (1 ≤ m ≤ 100000) запросов о наименьшем общем предке для пары вершин.
Запросы генерируются следующим образом. Заданы числа a1, a2 и числа x, y и z. Числа a3, ..., a2m генерируются следующим образом: ai = (x·ai - 2 + y·ai - 1 + z)mod: n. Первый запрос имеет вид (a1, a2). Если ответ на (i - 1)-й запрос равен v, то i-й запрос имеет вид ((a2i - 1 + v)mod: n, a2i).
Первая строка содержит два числа: n и m. Корень дерева имеет номер 0. Вторая строка содержит n - 1 целых чисел, i-е из этих чисел равно номеру родителя вершины i. Третья строка содержит число содержит два целых числа в диапазоне от 0 до n - 1: a1 и a2. Четвертая строка содержит три целых числа: x, y и z, эти числа неотрицательны и не превосходят 109.
Выведите в выходной файл сумму номеров вершин — ответов на все запросы.
3 2 0 1 2 1 1 1 0
2