Задача №1849. Плитки

У Пети имеется неограниченный набор красных, синих и зеленых плиток размером 1×1. Он выбирает ровно N плиток и выкладывает их в полоску. Например, при N = 10 она может выглядеть следующим образом:


К

К

К

С

З

К

К

З

К

С


(Буквой К обозначена красная плитка, С – синяя, З – зеленая)

После этого Петя заполняет следующую таблицу:



красный

синий

зеленый

красный

Y

Y

Y

синий

Y

N

Y

зеленый

Y

Y

N


В клетке на пересечении строки, отвечающей цвету А, и столбца, отвечающего цвету Б, он записывает "Y", если в его полоске найдется место, где рядом лежат плитки цветов А и Б и "N" в противном случае. Считается, что плитки лежат рядом, если у них есть общая сторона. (Очевидно, что таблица симметрична относительно главной диагонали – если плитки цветов А и Б лежали рядом, то рядом лежали и плитки цветов Б и А.) Назовем такую таблицу диаграммой смежности данной полоски.

Так, данная таблица представляет собой диаграмму смежности приведенной выше полоски.

Петя хочет узнать, сколько различных полосок имеет определенную диаграмму смежности. Помогите ему.

(Заметьте, что полоски, являющиеся отражением друг друга, но не совпадающие, считаются разными. Так, полоска


С

К

З

К

К

З

С

К

К

К


не совпадает с полоской, приведенной в начале условия.)

Формат входных данных

Первая строка входного файла содержит число N. (1 N 100). Следующие три строки входного файла, содержащие по три символа из набора {"Y", "N"}, соответствуют трем строкам диаграммы смежности. Других символов, включая пробелы, во входном файле не содержится. Входные данные корректны, т.е. диаграмма смежности симметрична.

Формат выходных данных

Выведите в выходной файл количество полосок длины N, имеющих приведенную во входном файле диаграмму смежности.

Примеры

Входные данные

Выходные данные

10

YYY

YNY

YYN

4596

3

YYY

YYY

YYY

0


Сдать: для сдачи задач необходимо войти в систему