Алгоритмы(1657 задач)
Структуры данных(279 задач)
Интерактивные задачи(17 задач)
Другое(54 задач)
Зал Большого галактического театра состоит из \(S\) рядов, по \(S\) мест в каждом ряду.Продажа билетов на каждый спектакль происходит по следующему принципу: первые \(S^2 - N\) ценителей прекрасного приобретают билеты на любые места по их вкусу, а оставшиеся \(N\) кресел администрация бесплатно выделяет студентам, отдавая дань сложившимся традициям.
Во избежание обвинений в дискриминации по половому признаку, рассаживать студентов по этим \(N\) местам необходимо таким образом, чтобы:
Каждое место в зале определяется двумя числами от 1 до \(S\) - номером ряда и номером самого места в этом ряду. Студенческое кресло номер \(i\) расположено в \(a_i\)-м ряду и имеет в нём номер \(b_i\). Поскольку ценители прекрасного могли занять совершенно любые места, числа \(a_i\) и \(b_i\) могут принимать любые значения от 1 до \(S\). В частности, может оказаться так, что в каком-нибудь ряду не будет ни одного студенческого места.
Ради упрощения работы билетёров администрация обращается к вам с заданием написать программу, которая автоматизирует процесс распределения студенческих мест на мужские и женские.
Сначала вводятся два целых числа \(S\) и \(N\) (\(1 \le S \le 100\,000\), \(1 \le N \le \min\{100\,000, S^2\}\)). Далее расположены \(N\) пар натуральных чисел \((a_i, b_i)\), не превосходящих \(S\). Гарантируется, что все места различные.
Если искомого способа не существует, выведите Impossible.Иначе выведите единственную строку из \(N\) символов ‘M’ (мужское) и ‘W’ (женское). Символ на \(i\)-й позиции соответствует статусу \(i\)-го места в той же нумерации, в которой они были перечислены во входных данных.
Тесты состоят из четырёх групп.
2 2 2 1 1 2
MW
3 5 1 2 2 3 1 3 2 1 1 1
WMWWM
По заданному числу \(N\) найдите натуральное число \(K\), такое что:
Так, для \(N=1\) условию удовлетворяет, например, число \(K=13223140496\), т.к. оно имеет длину 11, что укладывается в диапазон от 1 до 24, а также число \(1322314049613223140496\) является точным квадратом натурального числа.
Вводится одно натуральное число \(N\) (\(1 \le N \le 2323\)).
Выведите искомое число \(K\). Если чисел, удовлетворяющих условию, несколько, выведите любое из них. Если таких чисел не существует, выведите 0.
Тесты состоят из четырёх групп. В этой задаче нет off-line групп. Баллы за каждую группу начисляются только при прохождении всех тестов этой группы.
1
13223140496
11
13223140496
10
13223140496
39
1322314049586776859504132231404958677685950413223140496
В новой игре "Closed Loops 7" игрокам предлагается клетчатая таблица \(N\) на \(M\) клеток. Ход состоит в том, что очередной игрок рисует цикл - замкнутую линию без самопересечений, идущую только по сторонам клеток. Каждый цикл можно нарисовать только один раз за всю игру (при этом, конечно, не запрещается рисовать циклы, пересекающиеся с уже нарисованными). Игроки ходят по очереди. Выигрывает тот, кто рисует последний возможный цикл. К примеру, если \(N=2\), \(M=1\), то циклов всего три и игрок, делающий третий ход, выигрывает.
Вася позвал \(K-1\) друзей поиграть с ним. Чтобы произвести впечатление, он непременно хочет выиграть. Для этого ему нужно узнать, каким по счету игроком он должен быть, чтобы гарантированно одержать победу. Вася наслышан о ваших успехах в программировании, и за помощью он обратился именно к вам.
Даны три целых числа: \(N, M\) - размеры таблицы (\(1 \le N \le 100, 1 \le M \le 8\)) и \(K\) - количество игроков (\(1 < K \le 10^9\)).
Тесты состоят из трёх групп. В этой задаче нет off-line групп.
2 1 2
1
1 8 8064
36
На прямой задано \(N\) попарно различных отрезков \([a_i, b_i]\) (\(i = 1, 2, \dots, N\), \(a_i < b_i\)). Будем говорить, что отрезок номер \(i\) непосредственно содержится в отрезке номер \(j\) (\(i \ne j\)), если:
Ваша задача - для каждого из данных отрезков найти тот, в котором он непосредственно содержится, либо сообщить, что таких нет. Если данный отрезок непосредственно содержится сразу в нескольких - подходит любой из них.
Сначала вводится целое число \(N\) (\(1 \le N \le 100\,000\)). Далее идут \(N\) пар целых чисел \(a_i\), \(b_i\) (\(-10^9 \le a_i < b_i \le 10^9\)).
Выведите \(N\) чисел. Число номер \(i\) должно быть равно номеру отрезка, в котором непосредственно содержится отрезок номер \(i\), либо 0 - если такого не существует.
Если существует несколько решений, выведите любое.
Тесты состоят из четырёх групп.
4 2 3 0 4 1 6 0 5
3 4 0 0
При написании программы, проверяющей ответ участника для задачи 3204 "Отрезки на прямой возвращаются" (ссылка на задачу) (прочитайте её условие!), жюри столкнулось с трудностями, превосходящими сложность самой задачи. С мыслью "почему бы и нет" написание такой программы было решено также включить в комплект задач.
Проверяющей программе доступно три блока информации:
Ваша задача - написать программу, которая по этим данным определит, правильно ли программа абстрактного участника посчитала ответ.
Вход состоит из трёх частей. Первая часть - число \(N\) (\(1 \le N \le 100\,000\)) и следом \(N\) пар \(a_i\), \(b_i\) (\(-10^9 \le a_i \lt b_i \le 10^9\)). Далее идут \(N\) чисел, каждое из которых от 0 до \(N\), \(i\)-е равно номеру отрезка, являющегося одним из непосредственно содержащих \(i\)-й, либо нулю - по мнению абстрактного участника. Далее идут ещё \(N\) чисел в том же формате - ответ жюри на эту задачу.
Входные данные всегда корректны. Это означает, например, что ответ участника не нужно проверять на соответствие формату и что ответ жюри точно правильный.
Выведите \(N\) строк. В \(i\)-й строке должен быть вердикт для \(i\)-го отрезка. Выведите OK, если ответ абстрактного участника правильный, и WA - иначе.
Тесты состоят из четырёх групп.
4 2 3 0 4 1 6 0 5 2 2 1 0 3 4 0 0
OK WA WA OK