---> 2 задач <---
Источники --> Личные олимпиады --> Открытая олимпиада школьников
    2002(9 задач)
    2003(10 задач)
    2004(13 задач)
    2005(12 задач)
    2006(12 задач)
    2007(11 задач)
    2008-2009(19 задач)
    2009-2010(23 задач)
    2010-2011(19 задач)
    2011-2012(8 задач)
    2012-2013(21 задач)
    2013-2014(8 задач)
    2014-2015(8 задач)
Страница: 1 Отображать по:
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes
Задан набор людей, для каждого из них известно сколько километров человек должен проехать. Также задан набор такси, для каждого из них задана цена километра. Требуется отвезти всех людей за минимальную сумму.

Наши люди до метро на такси не ездят!

После затянувшегося совещания директор фирмы решил заказать такси, чтобы развезти сотрудников по домам. Он заказал N машин — ровно столько, сколько у него сотрудников. Однако когда они подъехали, оказалось, что у каждого водителя такси свой тариф за 1 километр.

Директор знает, какому сотруднику сколько километров от работы до дома (к сожалению, все сотрудники живут в разных направлениях, поэтому нельзя отправить двух сотрудников на одной машине). Теперь директор хочет определить, какой из сотрудников на каком такси должен поехать домой, чтобы суммарные затраты на такси (а их несет фирма) были минимальны.

Входные данные

Сначала во входном файле записано натуральное число N (1≤N≤1000) — количество сотрудников компании (совпадающее с количеством вызванных машин такси). Далее записано N чисел, задающих расстояния в километрах от работы до домов сотрудников компании (первое число — для первого сотрудника, второе — для второго и т.д.). Все расстояния — положительные целые числа, не превышающие 1000. Далее записано еще N чисел — тарифы за проезд одного километра в такси (первое число — в первой машине такси, второе — во второй и т.д.). Тарифы выражаются положительными целыми числами, не превышающими 10000.

Выходные данные

В выходной файл выведите N чисел. Первое число — номер такси, в которое должен сесть первый сотрудник, второе число — номер такси, в которое должен сесть второй и т.д., чтобы суммарные затраты на такси были минимальны. Если вариантов рассадки сотрудников, при которых затраты минимальны, несколько, выведите любой из них.

Примеры
Входные данные
3
10 20 30
50 20 30
Выходные данные
1 3 2 
Входные данные
5
10 20 1 30 30 
3 3 3 2 3
Выходные данные
5 1 3 2 4 
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
512 megabytes
Даны несколько ломанных (кусочно-линейных функций, определённых на отрезке \([a, b]\)). Требуется определить, верно ли, что для каждой пары таких функций одна из функций больше либо равна, чем другая во всех точках отрезка \([a, b]\)

На протяжении многих лет Вася работает программистом в одной очень большой и очень известной компании. Эта компания обеспечивает своих сотрудников всем необходимым для приятной и плодотворной работы: бесплатными обедами, транспортом от дома до места работы и многим, многим другим. И вот в один прекрасный солнечный день Вася понял, что ему очень наскучил вид из окна его офиса, и ему нужно, чтобы за окном было что-то новое и прекрасное. А что может быть лучше чудесного горного пейзажа? Придя к этой мысли, Вася попросил своего менеджера подобрать себе новый офис с красивым видом на горы.

В той местности, где располагается офис Васи, каждая гора принадлежит некоторой горной цепи. Так как Васе хочется, чтобы вид из окна его офиса был идеальным, то он попросил подобрать себе такой офис, чтобы никакие две горные цепи, видимые из окна, не пересекались. Менеджер Васи нашел прекрасный новый офис, из которого видно N горных цепей, но он никак не может определить, понравится ли Васе вид из окна этого офиса. Помогите ему!

Более формально, вид из окна офиса представляет собой набор горных цепей, пронумерованных от \(1\) до \(N\), где горная цепь с номером i представляет собой ломаную на плоскости из \(l_i\) звеньев с вершинами в точках (\(x_i\),\(j\) , \(y_i\),\(j\) ), причем для любых \(i\), \(j\) выполнено \(x_{i,j} < x_{i,j+1}\).

Кроме этого, окно в офисе имеет фиксированную ширину, поэтому все горные цепи начинаются и заканчиваются на одной вертикали, то есть существуют такие числа \(A\) и \(B\), что для любого номера \(i\) горной цепи выполнено \(x_{i,0} = A, x_{i,l_i} = B\).

Отметим, что из определения горной цепи следует, что для любого значения абсциссы \(A \le x \le B\) на ломаной с номером \(i\) существует единственная точка (\(x\), \(y_i\)(\(x\))) с этим значением абсциссы, принадлежащая этой ломаной. Будем говорить, что горная цепь \(i\) находится строго выше горной цепи \(j\) в точке \(x\), если выполнено строгое неравенство \(y_i(x) > y_j (x)\).

Естественно считать, что цепь под номером \(i\) пересекается с цепью под номером \(j\), если существуют такие два значения абсциссы \(x_1\), \(x_2\), что цепь \(i\) находится строго выше цепи \(j\) в точке \(x_1\), но при этом цепь \(j\) находится строго выше цепи \(i\) в точке \(x_2\), то есть выполнены неравенства \(y_i\)(\(x_1\)) > \(y_j\) (\(x_1\)) и \(y_j\) (\(x_2\)) > \(y_i\)(\(x_2\)). Обратите внимание на поясняющие рисунки, расположенные в примечании к задаче.

Вам необходимо определить, подойдет ли подобранный офис Васе, и, если нет, то найти любую пару пересекающихся горных цепей.

Входные данные

В первой строке входных данных через пробел идут два целых числа: \(A\) и \(B\) (\(−10^9 \le A < B \le 10^9\) ).

Во второй строке входных данных находится единственное число \(N\) — количество горных цепей, видимых из окна подобранного менеджером Васи офиса (\(1 \le N \le 100 000\)).

Далее следуют описания N горных цепей. В первой строке i-го описания содержится число \(l_i \ge 1\) — количество звеньев ломаной, из которых состоит соответствующая горная цепь. В следующих \(l_i\) + 1 строках описания содержатся два целых числа — координаты (\(x_{i, j} , y_{i,j}\) ) вершин ломаной (\(0 \le j \le l_i\)). Суммарное число звеньев всех ломаных не превосходит 200 000.

Гарантируется, что для каждой горной цепи вершины соответствующей ей ломаной идут во входных данных в порядке возрастания абсциссы, причем для любого \(i\) выполнено \(x_{i,0} = A, x_{i,l_i} = B\).

Выходные данные

Если же офис подходит Васе, то есть никакие две горные цепи из входных данных не пересекаются, в единственной строке выходных данных выведите слово «Yes» (без кавычек).

Иначе выведите в первой строке слово «No» (без кавычек), а на следующей строке выведите два числа — номера двух пересекающихся горных цепей. Горные цепи нумеруются согласно их появлению во входных данных, начиная с 1.

Замечание

Напоминаем, что абсциссой точки называется её \(x\)-координата, а ординатой — её \(y\)-координата.

В первом примере хотя ломаные и касаются друг друга в точке (−3, 2), но, согласно данному выше определению, они не пересекаются.

Во втором примере в точке \(x_1\) = 1 одна ломаная выше другой, а в точке \(x_2\) = 3 — наоборот, то есть горные цепи пересекаются.

Система оценки

Тесты к этой задаче состоят из пяти групп. Баллы за каждую группу ставятся только при прохождении всех тестов группы и всех тестов предыдущих групп. Offline-проверка означает, что результаты тестирования вашего решения на данной группе станут доступны только после окончания соревнования.

Примеры
Входные данные
-3 3
2
1
-3 2
3 1
2
-3 2
0 4
3 2
Выходные данные
Yes
Входные данные
0 4
2
3
0 3
1 3
3 1
4 1
1
0 2
4 2
Выходные данные
No
1 2

Страница: 1 Отображать по:
Выбрано
:
Отменить
|
Добавить в контест