---> 6 задач <---
    2004(6 задач)
    2005(6 задач)
    2006(6 задач)
    2007(6 задач)
    2008(6 задач)
    2009(6 задач)
    2010(6 задач)
    2011(8 задач)
    2012(8 задач)
    2013(8 задач)
    2014(7 задач)
    2015(8 задач)
    2016(8 задач)
    2017(8 задач)
Страница: 1 2 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Вновь открытое казино предложило оригинальную игру.

В начале игры крупье выставляет в ряд несколько фишек разных цветов. Кроме того, он объявляет, какие последовательности фишек игрок может забирать себе в процессе игры. Далее игрок забирает себе одну из заранее объявленных последовательностей фишек, расположенных подряд. После этого крупье сдвигает оставшиеся фишки, убирая разрыв. Затем игрок снова забирает себе одну из объявленных последовательностей и так далее. Игра продолжается до тех пор, пока игрок может забирать фишки.

Рассмотрим пример. Пусть на столе выставлен ряд фишек rrrgggbbb, и крупье объявил последовательности rg и gb. Игрок, например, может забрать фишки rg, лежащие на третьем и четвёртом местах слева. После этого крупье сдвинет фишки, и на столе получится ряд rrggbbb. Ещё дважды забрав фишки rg, игрок добьётся того, что на столе останутся фишки bbbи игра закончится, так как игроку больше нечего забрать со стола. Игрок мог бы действовать и по-другому — на втором и третьем ходах забрать не последовательности rg, а последовательности gb. Тогда на столе остались бы фишки rrb. Аналогично, игрок мог бы добиться того, чтобы в конце остались ряды rrr или rbb.

После окончания игры полученные фишки игрок меняет на деньги. Цена фишки зависит от её цвета.

Требуется написать программу, определяющую максимальную сумму, которую сможет получить игрок.

Входные данные

В первой строке входных данных содержится число K (1 ≤ K ≤ 26) — количество цветов фишек. Каждая из следующих K строк начинается со строчной латинской буквы, обозначающей цвет. Далее в той же строке через пробел следует целое число Xi (1 ≤ Xi ≤ 150, i = 1..K) — цена фишки соответствующего цвета.

В (K+2)-ой строке описан ряд фишек, лежащих на столе в начале игры. Ряд задаетсяL строчными латинскими буквами (1 ≤ L ≤ 150), которые обозначают цвета фишек ряда.

В следующей строке содержится число N(1 ≤ N ≤ 150) — количество последовательностей, которые были объявлены крупье. В следующих N строках записаны эти последовательности. Гарантируется, что сумма длин этих N строк не превосходит 150 символов, и все они непустые.

Выходные данные

Выведите единственное целое число — максимальную сумму денег, которую может получить игрок.

Примеры
Входные данные
3
v 3
l 1
u 2
luvu
3
luv
vul
uuu
Выходные данные
6
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Теплым весенним днем группа из N школьников-программистов гуляла в окрестностях города Кисловодска. К несчастью, они набрели на большую и довольно глубокую яму. Как это случилось — непонятно, но вся компания оказалась в этой яме.

Глубина ямы равна H. Каждый школьник знает свой рост по плечи hi и длину своих рук li. Таким образом, если он, стоя на дне ямы, поднимет руки, то его ладони окажутся на высоте hi + li от уровня дна ямы. Школьники могут, вставая друг другу на плечи, образовывать вертикальную колонну. При этом любой школьник может встать на плечи любого другого школьника. Если под школьником i стоят школьники j1, j2, …, jk, то он может дотянуться до уровня hj1 + hj2 + … + hjk + hi + li.

Если школьник может дотянуться до края ямы (то есть hj1 + hj2 + … + hjk + hi + liH), то он может выбраться из нее. Выбравшиеся из ямы школьники не могут помочь оставшимся.

Найдите наибольшее количество школьников, которые смогут выбраться из ямы до прибытия помощи, и перечислите их номера.

Входные данные

В первой строке входных данных задается натуральное число N (1 ≤ N ≤ 2000) — количество школьников, попавших в яму.

Далее в N строках содержится по два целых числа: рост i-го школьника по плечи hi (1 ≤ hi ≤ 105) и длина его рук li (1 ≤ li ≤ 105).

В последней строке указано целое число — глубина ямы H (1 ≤ H ≤ 105).

Выходные данные

В первой строке выведите K — максимальное количество школьников, которые смогут выбраться из ямы. Если K > 0, то во второй строке в произвольном порядке выведите их номера, разделяя их пробелами. Школьники нумеруются с единицы в том порядке, в котором они заданы во входных данных. Если существует несколько решений, выведите любое.

Примечание

Решение, дающее правильный ответ только при N ≤ 100; H, hi, li ≤ 1000, будет оцениваться из 70 баллов.

Примеры
Входные данные
1
239 239
566
Выходные данные
0
Входные данные
3
1 2
1 2
4 1
7
Выходные данные
2
2 1 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Юный информатик стал исследовать, как изменяются суммы цифр натуральных чисел при умножении и делении на разные однозначные числа. Однажды он задался вопросом, можно ли восстановить число A, если нам известна сумма его цифр, а также сумма цифр числа D×A, где D — заданное однозначное число. Довольно быстро он установил, что для восстановления числа А этой информации недостаточно. Так, например, у чисел 9 и 45 одинаковые суммы цифр. Если же их умножить на 5, то получим числа 45 и 225, которые тоже имеют одинаковые суммы цифр.

Тогда юный информатик стал искать ответ на поставленный вопрос при условии, что нам известно K — количество десятичных знаков в числе A. К сожалению, и тут его ждало разочарование. У некоторых чисел, имеющих одинаковое количество цифр и одинаковые суммы цифр, после умножения на один и тот же множитель эти суммы опять оказываются одинаковыми. Такими числами, например, являются 42 и 51 при D = 3.

И тогда юный информатик поставил перед собой такую задачу: найти наименьшее K значное натуральное число A в десятичной системе счисления, которое имеет сумму цифр, равную S, а число D×A имеет сумму цифр, равную P.

Требуется написать программу, решающую поставленную задачу.

Входные данные

Вводятся четыре натуральных числа K, S, P, D (1 K 100, 1 S 9K, 1 P ≤ 9(K+1), 1 D 9).

Выходные данные

Выведите  число A, если оно существует, или –1, в противном случае. Число A не может начинаться с нуля.

Примечание

Решения, корректно работающие при K ≤ 40, будут оцениваться, исходя из 80 баллов.

Примеры
Входные данные
3 15 15 1
Выходные данные
159

Обычно автобусный билет с номером, состоящим из 6 цифр, считается счастливым, если сумма первых трех цифр его номера была равна сумме трех последних. Школьник Вася очень любил получать счастливые билеты, однако это случалось не так часто. Поэтому для себя он изменил определение счастливого билета. Счастливым он считал тот номер, сумма некоторых цифр которого равнялась сумме оставшихся цифр. В его представлении билет с номером 561743 счастливый, так как 5 + 1 + 4 + 3 = 6 + 7.

Вася вырос, но по привычке в номерах различных документов пытается найти признаки счастливого номера ☺. Для этого он расширил свое определение счастливого номера на n-значные номера лицевых счетов и других документов, состоящих из цифр от 0 до k (1 ≤ k ≤ 9). Номер документа он называет счастливым, если сумма некоторых цифр этого номера равняется сумме оставшихся. Остальные номера для него несчастливые. К сожалению, несмотря на расширенное понимание “счастья”, несчастливых номеров остается еще много...

Вам предлагается определить количество несчастливых n-значных номеров, которые можно составить, используя цифры от 0 до k. В номерах допускается любое количество ведущих нулей.

Входной файл unlucky.in содержит описание нескольких видов номеров. Каждый вид номеров определяется значениями n и k. Для данного входного файла вы должны создать соответствующий ему выходной файл и отправить его на проверку жюри.

Входные данные

Входной файл содержит несколько пар значений n и k, каждая пара записана в отдельной строке.

Выходные данные

Для каждой пары значений n и k входного файла выведите в соответствующей строке выходного файла искомое количество несчастливых билетов или 0, если такое число вам получить не удалось. Количество строк во входном и выходном файлах должно совпадать.

Примечание

За правильное решение задачи для каждого вида номеров вы получите 5 баллов. Так, представленный в примере выходной файл соответствует 15 баллам.

При сдаче на проверку выходного файла во время тура вы будете получать одно из двух сообщений:

  • Presentation Error — если файл не соответствует формату вывода. В этом случае файл не принимается на проверку.
  • Accepted — если файл формату вывода соответствует. В этом случае файл принимается на проверку. Проверка правильности ответов в выходном файле осуществляется только после окончания тура.
Содержание файла unlucky.in:
4 1
7 1
3 2
6 2
22 2
7 9
8 7
9 6
8 8
12 9
20 9
20 3
17 5
16 7
15 9
19 5
26 9
100 3
99 4
50 5
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

В кабинете информатики есть старый стековый калькулятор. Он содержит K ячеек памяти, организованных в виде стека. Первая ячейка называется вершиной стека. На индикаторе калькулятора отображается содержимое вершины стека, если стек непуст.

Над стеком может выполняться операция проталкивания. Применение этой операции приводит к записи числа на вершину стека. Перед этим, если в стеке уже были числа, то каждое из них перемещается в ячейку с номером на единицу больше. Если в стеке уже находится K чисел, то выполнение операции проталкивания невозможно.

Калькулятор позволяет выполнять арифметические операции. Они применяются к числам, хранящимся во второй и первой ячейках стека. Результат операции записывается в первую ячейку стека, а число из второй ячейки удаляется. После этого, если третья ячейка непуста, то число из неё переписывается во вторую, если есть число в четвертой ячейке — оно переписывается в третью и так далее до последней занятой ячейки, которая становится пустой. Для выполнения арифметической операции в стеке должно быть хотя бы два числа. Например, при выполнении операций сложения или умножения, значения соответственно суммы или произведения чисел из первой и второй ячеек помещаются на вершину стека. Операция вычитания выполняется так: из содержимого второй ячейки стека вычитается содержимое первой ячейки.

Известно, что калькулятор неисправен. Из цифровых клавиш работает только клавиша «1». Нажатие этой клавиши приводит к проталкиванию в стек числа 1. Например, попытка набрать число 11, два раза нажав клавишу «1», приводит к тому, что в стек два раза проталкивается число 1. Из операций работают только сложение (клавиша «+»), умножение (клавиша «*») и вычитание (клавиша «-»). Если в результате вычитания получено отрицательное число, то калькулятор зависает.

Легко заметить, что на индикаторе возможно получить произвольное натуральное число. Например, чтобы получить число 3, необходимо дважды нажать клавишу «1», затем клавишу «+» (на индикаторе после этого появится число 2), затем один раз нажать клавишу «1» и один раз — клавишу «+». При K > 2 того же результата можно достичь иначе, трижды нажав клавишу «1», а затем два раза клавишу «+». Дополнительно используя операции умножения и вычитания, в некоторых случаях число N можно получить быстрее, чем сложив N единиц.

Требуется написать программу, которая определяет, каким образом можно получить на индикаторе калькулятора заданное число N, выполнив минимальное количество нажатий клавиш. Стек изначально пуст.

Входные данные

В единственной строке входного файла записаны два натуральных числа — N и K (1  N  109, 2  K  100).

Выходные данные

В первой строке выходного файла выведите минимальное количество нажатий клавиш, необходимых для получения числа N. Если число нажатий не превосходит 200, то дополнительно выведите во второй строке оптимальную последовательность нажатий, приводящих к появлению данного числа на индикаторе.

Последовательность необходимо выводить без пробелов. Клавиши обозначаются символами «1» — протолкнуть число 1 в стек, «+» — выполнить операцию сложения, «*» — выполнить операцию умножения, «-» — вычесть из значения второй ячейки стека значение первой ячейки.

В результате выполнения выведенной последовательности нажатий на индикаторе должно отображаться число N. Если оптимальных последовательностей нажатий несколько, разрешается выводить любую из них.

Примечания

Решения, корректно работающие при N ≤ 100 и K ≤ 10, будут оцениваться из 40 баллов.

Решения, корректно работающие при N ≤ 106 и K ≤ 100, будут оцениваться из 80 баллов.

Примеры
Входные данные
1 2
Выходные данные
1
1
Входные данные
9 3
Выходные данные
11
11+1+11+1+*

Страница: 1 2 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест