Некоторые банки выпускают банковские карты, которые могут использоваться для оплаты проезда в метро. При проходе через турникеты по этой карте каждый проход фиксируется, подсчитывается количество проходов за календарный месяц и раз в месяц с карточки списываются деньги в соответствии с тем, сколько было сделано проходов по специальным тарифам (приведены тарифы по состоянию на 15.10.2009):
Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) | Кол-во поездок | Стоимость (руб.) |
---|---|---|---|---|---|---|---|
1 | 22 | 19 | 362 | 37 | 586.13 | 55 | 804.38 |
2 | 44 | 20 | 380 | 38 | 598.25 | 56 | 816.5 |
3 | 64.33 | 21 | 392.13 | 39 | 610.38 | 57 | 828.63 |
4 | 84.67 | 22 | 404.25 | 40 | 622.5 | 58 | 840.75 |
5 | 105 | 23 | 416.38 | 41 | 634.63 | 59 | 852.88 |
6 | 124 | 24 | 428.5 | 42 | 646.75 | 60 | 865 |
7 | 143 | 25 | 440.63 | 43 | 658.88 | 61 | 863.5 |
8 | 162 | 26 | 452.75 | 44 | 671 | 62 | 862 |
9 | 181 | 27 | 464.88 | 45 | 683.13 | 63 | 860.5 |
10 | 200 | 28 | 477 | 46 | 695.25 | 64 | 859 |
11 | 218 | 29 | 489.13 | 47 | 707.38 | 65 | 857.5 |
12 | 236 | 30 | 501.25 | 48 | 719.5 | 66 | 856 |
13 | 254 | 31 | 513.38 | 49 | 731.63 | 67 | 854.5 |
14 | 272 | 32 | 525.5 | 50 | 743.75 | 68 | 853 |
15 | 290 | 33 | 537.63 | 51 | 755.88 | 69 | 851.5 |
16 | 308 | 34 | 549.75 | 52 | 768 | 70 | 850 |
17 | 326 | 35 | 561.88 | 53 | 780.13 | ||
18 | 344 | 36 | 574 | 54 | 792.25 |
Родители завели двум братьям Пете и Васе по такой карточке. Петя и Вася иногда ездят вместе, а иногда - порознь. Естественно, когда они едут не вместе, то каждый из них пользуется своей карточкой. Когда же они едут вместе, они могут как воспользоваться каждый своей карточкой, так и оба пройти по одной из карточек (совершив два прохода по этой карточке).
Кроме того, они заметили, что в некоторых случаях бывает выгодно совершать лишние проходы по карточке (например, если по карточке за месяц совершено 69 проходов, то надо сделать 70-й - списанная сумма в этом случае окажется меньше).
Известно, что в наступающем месяце Вася собирается сделать A самостоятельных поездок, Петя - B самостоятельных поездок, и еще С поездок они сделают вместе (то есть всего они сделают A+B+2C проходов через турникеты). Напишите программу, которая по заданным числам A, B и C определит минимальную сумму, которую они могут потратить (с учетом банковских комиссий, при необходимости совершив лишние проходы через турникеты).
Вводятся целые числа \(A\), \(B\), \(C\) (каждое из них из диапазона от 0 до 1000).
Выведите, сколько рублей будет списано суммарно с Васиной и Петиной карточек. Результат должен быть выведен с двумя знаками после десятичной точки.
1 1 0
64.00
59 0 0
860.00
10 10 10
721.25
0 0 30
860.00
Из описания некоего растения: «… его время жизни составляет 20 лет. В первый год плод растения попадает в землю. Первые побеги растения появляются лишь на второй год. Плодоносить растение начинает с четвертого года и ежегодно дает по 1 плоду, которые сразу попадают в землю, и из них вырастают такие же растения. На двадцатый год своей жизни растение плодоносит в последний раз, а на двадцать первый год – погибает».
Напишите программу, которая определяет, сколько живых растений будет в N-м году, если в первый год мы посадим один плод этого растения. Только что посаженные плоды за растения не считаются. Также не считаются живыми растения, для которых данный год является 21-м (или больше) годом жизни.
Замечания
Из описания следует, что плод, который появился в 4-м году, сразу попадает в землю, и этот год считается 1-м годом жизни нового растения (при этом при подсчете числа живых растений в этом году данное растение еще не будет учтено). Это растение даст первые побеги в 5-м году, начнет плодоносить — в 7-м, а последний раз будет плодоносить в 23-м году и перестанет быть живым – в 24-м.
При подсчете числа живых растений в 20-м году исходное растение еще считается живым, а в 21-м — уже не считается.
Вводится единственное натуральное число N, не превышающее 100.
Выведите единственное число – сколько живых растений будет в N‑м году. Только что посаженные плоды за растения не считаются.
Комментарий к примеру тестов
1. Первые три года растение не плодоносит, на четвертый год оно дало 1 плод, но он еще не считается полноценным живым растением.
2. Первые 3 года у нас есть 1 растение, на 4-й год оно дает 1 плод; на 5-й год этот плод прорастает, а исходное растение дает еще 1 плод; на 6-й год второй плод прорастает, исходное растение дает плод, который растением еще не считается.
3. Начиная с 4-го года, исходное растение начинает давать по одному плоду (и дает по плоду на 4-м, 5-м, 6-м, 7-м, 8-м,… годах). Растение, которое получилось из плода, который появился на 4-м году, начинает плодоносить с 7-го года (и дает плоды на 7-м, 8-м, … годах). Растение, которое получилось из плода, который появился на 5-м году, начинает плодоносить с 8-го года. При этом все плоды, появившиеся на 9-м году, растениями еще не считаются. Итого, учитывая исходное растение, у нас будет 9 растений.
Подзадача | Баллы | Ограничения | Необходимые подзадачи |
1 | 30 | \(n \le 15\) | тесты |
2 | 30 | \(n \le 40\) | 1 |
3 | 40 | Нет дополнительных ограничений | 2 |
4
1
6
3
9
9