Темы --> Информатика
    Язык программирования(952 задач)
    Алгоритмы(1657 задач)
    Структуры данных(279 задач)
    Интерактивные задачи(17 задач)
    Другое(54 задач)
---> 544 задач <---
Страница: << 61 62 63 64 65 66 67 >> Отображать по:
ограничение по времени на тест
0.1 second;
ограничение по памяти на тест
256 megabytes

Вы уже знаете, сколько нефти добывается в Ханты-Мансийском автономном округе. Другой хозяйственной отраслью Югры является оленеводство. Нередко можно увидеть, как на нефтяной площадке, окружённой изгородью, работают нефтяники, а вокруг изгороди пасутся олени.

Оленевод Ванхо привязал своего оленя Ахтамака к изгороди нефтяной площадки, имеющей форму выпуклого многоугольника. Олень был привязан на длинной верёвке, чтобы он не убежал и при этом мог пастись. Вокруг нефтяной вышки растёт такой вкусный ягель, что олень тут же принялся его щипать.

Напишите программу, вычисляющую площадь участка вне изгороди, ягель на котором будет доступен оленю. Форма изгороди, точка привязывания и длина верёвки задаются во входном файле.

Входные данные

В первой строке входного файла записано целое число \(n\) — количество углов изгороди (\(3\le n\le100\)). В последующих \(n\) строках записаны координаты углов изгороди в порядке обхода по часовой стрелке. В последней строке записаны три числа — координаты точки привязывания оленя к изгороди и длина верёвки. Все координаты целые и не превосходят по модулю \(10^4\). Длина верёвки — целое положительное число, не превосходящее \(10^4\). Числа в каждой строке разделены пробелами. Гарантируется, что изгородь представляет собой строго выпуклый многоугольник и точка привязывания оленя лежит на его границе.

Выходные данные

В выходной файл выведите значение площади с точностью не менее \(10^{-3}\).

Система оценивания

Решения, корректно работающие на тестах из примеров, а также в случае, если длина верёвки не превосходит половины периметра изгороди и изгородь представляет собой прямоугольник со сторонами, параллельными осям координат, будут оцениваться из 30 баллов.

Решения, корректно работающие на тестах из примеров, а также в случае, если длина верёвки не превосходит половины периметра изгороди, будут оцениваться из 60 баллов.

Примеры
Входные данные
4
-5 -5
-5 5
5 5
5 -5
5 0 4
Выходные данные
25.1327412287
Входные данные
4
0 0
0 2
4 2
4 0
2 0 4
Выходные данные
31.4159265359
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
256 megabytes

Фермер Архип решил заняться земледелием и выращивать брюссельскую редиску. Для этого он купил прямоугольное поле, состоящее из \(n\) рядов по \(m\) участков в каждом. Все участки являются одинаковыми и имеют квадратную форму. Оказалось, что на момент покупки некоторые из этих участков уже удобрены, а некоторые — нет. Редиска растет только на удобренных участках.

Для получения большего урожая Архип решил удобрить некоторый прямоугольный фрагмент поля, состоящий из целых участков. В выбранном фрагменте Архип удобряет каждый участок. Повторное удобрение участка делает его непригодным к выращиванию брюссельской редиски. Закончив удобрять, фермер выбирает для посадки редиски прямоугольный фрагмент поля, состоящий из целых участков, каждый из которых удобрен ровно один раз.

Архип должен выбрать на поле фрагмент для удобрения таким образом, чтобы фрагмент для посадки редиски имел максимальную площадь.

Напишите программу, которая по заданному полю находит фрагмент поля для удобрения и фрагмент поля под посадку.

Входные данные

В первой строке входного файла записаны натуральные числа \(n\) и \(m\) (\(2\le n\le2\,000\), \(2\le m\le2\,000\)), где \(n\) — количество рядов на поле, а \(m\) — количество участков в каждом ряду (количество столбцов). Далее в \(n\) строках содержится описание поля. Каждая из этих \(n\) строк содержит \(m\) символов. Символ «1» обозначает, что соответствующий участок поля удобрен, а «0» — не удобрен. Гарантируется, что поле содержит хотя бы один удобренный и хотя бы один неудобренный участок. Поле расположено таким образом, что первая строка его описания соответствует северной стороне, а первый столбец — западной стороне.

Выходные данные

Первая строка должна описывать фрагмент поля для удобрения. Фрагмент описывается четырьмя числами \(a\), \(b\), \(c\), \(d\), где \(a\) и \(b\) — номер ряда и столбца самого северо-западного его участка, а \(c\) и \(d\) — номер ряда и столбца самого юго-восточного. Ряды нумеруются с севера на юг от 1 до \(n\), а столбцы — с запада на восток от 1 до \(m\).

Вторая строка должна описывать фрагмент под посадку в том же формате.

Третья строка должна содержать площадь фрагмента (количество участков) под посадку.

Если решений несколько, выведите любое.

Система оценивания

Решения, корректно работающие при \(n\le40\) и \(m\le40\), будут оцениваться из 30 баллов, а решения, корректно работающие при \(n\le300\) и \(m\le300\), будут оцениваться из 60 баллов.

Примеры
Входные данные
4 4
1110
1010
1110
0000
Выходные данные
2 2 2 2
1 1 3 3
9
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Требуется подсчитать, на сколько раньше будет заканчиваться k-й урок, если все перемены сократить на 5 минут.

Входные данные

Вводится одно натуральное число k, не превосходящее 7.

Выходные данные

Вывести одно натуральное число — время в минутах.

Примеры
Входные данные
3
Выходные данные
10
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Требуется подсчитать, сколько дней прошло с начала 2010 года до указанной даты в 2010 году.

Входные данные

Вводятся два числа, разделенных пробелом - число, месяц.

Выходные данные

Вывести одно число - количество дней.

Примеры
Входные данные
2 1
Выходные данные
2
Входные данные
31 12
Выходные данные
365
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
32 megabytes

На плоскости задан квадрат координатами двух своих противоположных вершин. Найти координаты остальных двух вершин квадрата. Результат вывести с точностью до 0,01.

Входные данные

В первой строке вводятся x1 и y1 — координаты одной из вершин квадрата через пробел, во второй строке вводятся x2 и y2 — координаты противоположной вершины квадрата через пробел. Все числа по модулю не превышают 100.

Выходные данные

В первой строке вывести с точностью до 0,01 координаты третьей вершины квадрата x3 и y3 через пробел. Во второй строке вывести с точностью до 0,01 координаты четвертой вершины квадрата x4 и y4 через пробел.

Примеры
Входные данные
7 3
2 4
Выходные данные
5.00000 6.00000
4.00000 1.00000

Страница: << 61 62 63 64 65 66 67 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест