Темы --> Информатика --> Алгоритмы --> Алгоритмы поиска
    Линейный поиск(29 задач)
    Бинарный поиск(101 задач)
    Порядковые статистики(3 задач)
    Поиск подстроки в строке(1 задач)
    Тернарный поиск(8 задач)
    "Два указателя"(18 задач)
---> 43 задач <---
Страница: << 1 2 3 4 5 6 7 >> Отображать по:
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Будем называть цепочкой слов длины n последовательность слов \(w_1\), \(w_2\), …, \(w_n\), такую, что для всех \(i\) от 1 до \(n\) – 1 слово \(w_i\) является собственным префиксом слова \(w_i\)+1.

Слово \(u\) длины \(k\) называется собственным префиксом слова \(v\) длины \(l\), если \(l\) > \(k\) и первые \(k\) букв слова \(v\) совпадают со словом \(u\). Например, «program» является собственным префиксом слова «programmer».

Задано множество слов \(S\) = {\(s_1\), \(s_2\), …, \(s_m\)} и последовательность чисел \(x\)[1], \(x\)[2], …, \(x\)[\(k\)]. Требуется найти такие числа \(l\) и \(r\) (\(l\) ≤ \(r\)), что \(s_x\)[\(l\)], \(s_x\)[\(l\) + 1], …, \(s_x\)[\(r\) – 1], \(s_x\)[\(r\)] является цепочкой слов, и количество слов в цепочке (число \(r\) – \(l\) + 1) максимально.

Входные данные

Первая строка входного файла содержит целое число \(m\) (1 ≤ \(m\) ≤ 250 000). Каждая из следующих \(m\) строк содержит по одному слову из множества \(S\).

Все слова не пусты, имеют длину, не превосходящую 250 000 символов, и состоят только из строчных букв латинского алфавита. Суммарная длина всех слов не превосходит 250 000.

Следующая строка содержит число \(k\) (1 ≤ \(k\) ≤ 250 000). Последняя строка входного файла содержит \(k\) чисел — последовательность чисел \(x\)[1], \(x\)[2], …, \(x\)[\(k\)] (для всех \(i\) выполнено 1 ≤ \(x\)[\(i\)] ≤ \(m\)).

Выходные данные

Выведите в первой строке выходного файла два числа: \(l\) и \(r\). Если оптимальных ответов несколько, выведите любой из них. Разделяйте числа пробелом.

Примеры
Входные данные
3
zngs
rjzr
zng
3
3 1 1
Выходные данные
1 2
Входные данные
6
gjnuitvaowpy
gjnuitvaowpym
gjnuitvaowp
rjzrociinzeco
tgbotnzepnvm
aigqbzpnerv
9
2 3 1 2 3 1 2 3 1
Выходные данные
2 4
Заданы начальные координаты и скорости кораблей на плоскости. Есть бомбы, уничтожающие корабли на расстоянии не превышающем R от центра взрыва. Взрывать бомбы можно только в целые моменты времени. Требуется уничтожить все корабли наименьшим количеством бомб.

N вражеских кораблей движутся прямолинейно с постоянными скоростями. Вакуумная бомба уничтожает все объекты в радиусе R от точки взрыва (то есть все объекты, расстояние от которых до точки взрыва не больше R). Взрывать бомбу можно только в целые моменты времени.

Требуется определить, за какое наименьшее количество взрывов можно уничтожить все корабли, а также в какие моменты времени и в каких точках для этого следует произвести взрывы. Время отсчитывается от момента, когда координаты движущихся кораблей были определены со спутника.

Входные данные

В первой строке входных данных задаются целые числа N (2 <= N <= 10) и R (0 < R ≤ 50. В следующих Nстроках  содержится по 4 числа, описывающих движение кораблей. Первые два числа строки – координаты корабля в момент времени 0, по модулю не превосходящие 105. Следующие два числа – значения координат вектора скорости, по модулю не превосходящие 1000. Все эти числа целые.

Гарантируется, что никакие 2 корабля не имеют одинаковые векторы скорости.Однако вполне возможно, что в какой-то момент времени два корабля пройдут через одну точку.

Выходные данные

В первой строке выведите одно число – минимальное количество взрывов K. В следующих K строках для каждого взрыва выведите по три числа: целое время взрыва и вещественные координаты взрыва, указанные с точностью не менее трех значащих цифр после точки. Разрешается производить взрывы как в разные, так и в один и тот же момент времени. Разрешается взрывы производить как в различных точках, так и в одной точке в разные моменты времени.

Если решений несколько, выведите любое из них.

Комментарий. Решения, верно работающие при N ≤ 3, будут набирать не менее 50 баллов.

Примеры
Входные данные
3 3
-3 3 1 0
0 -6 0 2
-8 6 4 -1
Выходные данные
1
3 2.000 1.500
Входные данные
2 1
-4 -4 2 2
2 2 -2 -2
Выходные данные
2
0 -4.0000 -4.0000
0 2.0000 2.0000
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Петя достаточно давно занимается в математическом кружке, поэтому он уже успел не только правила выполнения простейших операций, но и такое достаточно сложное понятие как симметрия. Для того, чтобы получше изучить симметрию Петя решил начать с наиболее простых геометрических фигур – треугольников. Он скоро понял, что осевой симметрией обладают так называемые равнобедренные треугольники. Поэтому теперь Петя ищет везде такие треугольники.

Напомним, что треугольник называется равнобедренным, если его площадь положительна, и у него есть хотя бы две равные стороны.

Недавно Петя, зайдя в класс, увидел, что на доске нарисовано n точек. Разумеется, он сразу задумался, сколько существует троек из этих точек, которые являются вершинами равнобедренных треугольников.

Требуется написать программу, решающую указанную задачу.

Входные данные

Входной файл содержит целое число n (3 ≤ n ≤ 1500). Каждая из последующих строк содержит по два целых числа – xi и yi – координаты i-ой точки. Координаты точек не превосходят 109 по абсолютной величине. Среди заданных точек нет совпадающих.

Выходные данные

В выходной файл выведите ответ на задачу.

Разбалловка для личной олимпиады

Тесты 1-2 — из условия. Оцениваются в 0 баллов.

Тесты 3-13 — n не превосходит 500. Группа тестов оценивается в 40 баллов.

Тесты 14-28 — дополнительных ограничений нет. Группа тестов оценивается в 60 балла (вместе с предыдущими группами — 100 баллов).

Баллы начисляются за прохождение всех тестов группы и всех тестов предыдущих групп. При выставлении баллов за отдельные тесты каждый тест (кроме тестов из условия) оценивается в 4 балла.

Примеры
Входные данные
3
0 0
2 2
-2 2
Выходные данные
1
Входные данные
4
0 0
1 1
1 0
0 1
Выходные данные
4
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Как известно, при распространении радиоволн возникает интерференция, поэтому если рядом расположены две радиопередающие станции, вещающие на одной и той же частоте, то качество радиопередач резко снижается.

Радиостанция «Байтик» планирует транслировать свои программы в стране Флатландия. Министерство связи Флатландии выдало радиостанции лицензию на вещание на двух различных частотах.

Владельцы радиостанции имеют возможность транслировать свои радиопрограммы с использованием N радиовышек, расположенных в различных точках страны. Для осуществления трансляции на каждой радиовышке требуется установить специальный передатчик – трансмиттер. Каждый передатчик можно настроить на одну из двух частот, выделенных радиостанции. Кроме частоты вещания, передатчик характеризуется также своей мощностью. Чем мощнее передатчик, тем на большее расстояние он распространяет радиоволны. Для простоты, предположим, что передатчик мощности R распространяет радиоволны на расстояние, равное R километрам.

Все передатчики, установленные на вышках, должны, согласно инструкции министерства, иметь одну и ту же мощность. Чтобы программы радиостанции могли приниматься на как можно большей территории, мощность передатчиков должна быть как можно большей. С другой стороны, необходимо, чтобы прием передач был качественным на всей территории Флатландии. Прием передач считается качественным, если не существует такого участка ненулевой площади, на который радиоволны радиостанции «Байтик» приходят на одной частоте одновременно с двух вышек.

Требуется написать программу, которая определяет, какую максимальную мощность можно было установить на всех передатчиках, позволяющую выбрать на каждом передатчике такую одну из двух частот передачи, чтобы прием был качественным на всей территории Флатландии.

Входные данные

Первая строка содержит число N — количество вышек (3 ≤ N ≤ 1200). Последующие N строк содержат по два целых числа — координаты вышек. Координаты заданы в километрах и не превышают 104 по модулю. Все точки, в которых расположены вышки, различны. Все числа в строках разделены пробелом.

Выходные данные

В первой строке выводится вещественное число — искомая мощность передатчиков. Во второй строке выводятся N чисел, где i-е число должно быть равно 1, если соответствующий передатчик должен вещать на первой частоте, и 2, если на второй. Ответ должен быть выведен с точностью, не меньшей 10–8.

Примеры
Входные данные
4
0 0
0 1
1 0
1 1
Выходные данные
0.707106781186548
1 2 2 1
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Ассоциация Тапкодер организует Всемирное парное соревнование сильнейших программистов. К участию в соревновании допущены первые 2k зарегистрировавшихся участников, которым присвоены номера от 1 до 2k.

Соревнование будет проходить по олимпийской системе. В первом туре первый участник встречается со вторым, третий с четвертым и так далее. В каждой паре победителем становится участник, первым решивший предложенную задачу, при этом ничьих не бывает. Все победители очередного тура и только они являются участниками следующего тура. В каждом туре пары составляются из участников в порядке возрастания присвоенных им номеров. Соревнование продолжается до тех пор, пока не останется один победитель.

Организаторам стало известно, что некоторые пары участников заранее договорились о результате встречи между собой, если такая встреча состоится. Для всех остальных встреч, кроме n договорных, возможен любой исход.

Некоторые m участников соревнования представили свои резюме в ассоциацию Тапкодер с целью поступления на работу. Организаторов интересует, до какого тура может дойти каждый из претендентов при наиболее благоприятном для него стечении обстоятельств. При этом для каждого участника в отдельности считается, что все недоговорные встречи, в том числе те, в которых он не участвует, закончатся так, как ему выгодно, а все состоявшиеся договорные встречи закончатся в соответствии с имеющимися договоренностями.

Требуется написать программу, которая для каждого из претендентов определяет максимальный номер тура, в котором он может участвовать.

Входные данные

В первой строке заданы три целых числа k (1 ≤ k ≤ 60), n (0 ≤ n ≤ 100 000) и m (1 ≤ m ≤ 100 000). В следующих n строках описаны n пар участников, которые договорились между собой о том, что первый из двух участников пары выиграет встречу, если она состоится. Гарантируется, что каждая пара участников присутствует во входных данных не более одного раза, при этом, если задана пара x y, то пары y x быть не может, кроме того, x y. В последней строке перечислены номера участников, желающих работать в Тапкодере, в порядке возрастания их номеров. Все номера претендентов на работу различны.

Выходные данные

Выходные данные должны содержать m целых чисел — максимальные номера туров, до которых могут дойти соответствующие претенденты на работу. Туры нумеруются от 1 до k.

Комментарии к примерам тестов.

1. У каждого из участников есть возможность выйти в финал, так как договорных матчей нет.

2. Если четвертый участник выиграет у третьего, то договорная встреча первого и третьего не состоится, что благоприятно для первого.

3. Первому участнику благоприятно во втором туре играть с третьим, а не с четвертым, в свою очередь, четвертый может выиграть у третьего и также выйти в финал.

Система оценки

Тесты к этой задаче состоят из четырех групп, баллы начисляются только при прохождении всех тестов группы и всех тестов предыдущих групп.

0. Тесты 1–10. k <= 5. Эта группа оценивается в 30 баллов.

1. Тесты 11–14. k <= 20. Эта группа оценивается в 20 баллов.

2. Тесты 15–18. k <= 30. Эта группа оценивается в 20 баллов.

3. Тесты 19–23. Дополнительные ограничения отсутствуют. Эта группа оценивается в 30 баллов.

Примеры
Входные данные
2 0 3
1 3 4
Выходные данные
2 2 2
Входные данные
3 1 1
3 1
1
Выходные данные
3
Входные данные
3 3 4
1 2
1 3
4 1
1 2 3 4
Выходные данные
3 1 2 3

Страница: << 1 2 3 4 5 6 7 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест