Темы --> Информатика --> Алгоритмы --> Алгоритмы поиска
    Линейный поиск(29 задач)
    Бинарный поиск(101 задач)
    Порядковые статистики(3 задач)
    Поиск подстроки в строке(1 задач)
    Тернарный поиск(8 задач)
    "Два указателя"(18 задач)
---> 43 задач <---
Страница: << 3 4 5 6 7 8 9 >> Отображать по:
ограничение по времени на тест
2.5 second;
ограничение по памяти на тест
512 megabytes

На улице уже неделю лил беспросветный дождь, а Игорь все сидел дома и играл в свои любимые игрушки. Но играть так долго в одно и то же ему быстро надоело, и он пошел к родителям выпрашивать новые. Родители быстро сдались, поэтому на следующий день вся семья собралась, и они поехали в магазин игрушек.

При входе в магазин у Игоря сразу разбежались глаза. Ему хотелось и гоночную машинку, и кораблик с белыми парусами, и саблю, которая так и манила его своим блестящим лезвием. Всего в магазине продается \(N\) новых игрушек, причем так получилось, что все они плоские и имеют форму выпуклых многоугольников (действительно, на что еще можно было надеяться в магазине «Сто тысяч и один выпуклый многоугольник для детей младшего школьного возраста»?). Но строгий отец сказал, что купит Игорю только две игрушки. Игорь сразу же начал перебирать в голове варианты, но их оказалось слишком много, а если быть более конкретным, то его интересовало ровно \(Q\) вариантов выбора пары игрушек.

Любознательный Игорь сразу же задумался о тонкостях упаковки игрушек. А именно, для каждой интересующей его пары игрушек \(i\), \(j\) он хочет проделать следующие операции.

Изначально каждая игрушка лежит в своей плоской прямоугольной коробке, которая плотно прилегает к игрушке. Далее Игорь ставит эти две коробки на стол рядом друг с другом (\(i\)-ю игрушку можно поставить как левее \(j\)-й, так и правее), убирает коробки, потом придвигает игрушки друг к другу, насколько это возможно, и кладет то, что получилось, обратно в коробку (обратите внимание на рисунок). Так как Игорь очень экономный, ему нужно знать размеры получившейся коробки. Повлиять на высоту итоговой коробки, двигая игрушки параллельно плоскости стола, нельзя, так что вам нужно помочь Игорю лишь с определением минимально возможной ширины получившейся коробки.

Обратите внимание, что игрушки можно лишь двигать параллельно плоскости стола, поворачивать их каким-либо образом запрещено. Таким образом, задачу можно считать двумерной: ось \(O_x\) совпадает с плоскостью стола, а ось \(O_y\), по которой измеряется высота игрушек и коробок, перпендикулярна плоскости стола. Стороны коробок параллельны соответствующим осям координат. Диковинных игрушек в магазине предостаточно, так что они могут «стоять» на столе, в том числе и балансируя на одной вершине самым непостижимым образом.

Для лучшего понимания условия ознакомьтесь с примером и иллюстрациями к нему.

Формат входного файла

В первой строке содержится натуральное число \(N\) (1 ≤ \(N\) ≤ 100 000) - количество игрушек. Далее следуют описания \(N\) выпуклых многоугольников в следующем формате: сначала идет натуральное число \(k_m\) (3 ≤ \(k_m\) ≤ 300 000) - количество вершин в \(m\)-м многоугольнике, затем идут \(k_m\) строк, в которых записаны пары целых чисел xm,s, ym,s, по модулю не превосходящих \(10^9\) - координаты вершин \(m\)-го многоугольника в порядке обхода против часовой стрелки, заданные в системе координат соответствующей ему коробки, которая стоит на столе (это означает, что ym,s >= 0, а также для всех игрушек существует вершина \(v_m\), у которой ym,\(v_m\) = 0). Сумма всех \(k_m\) (обозначим ее за \(S\)) не превосходит 300 000.

В следующей строке записано натуральное число \(Q\) (1 ≤ \(Q\) ≤ 500 000) - число вариантов. Следующие \(Q\) строк содержат пары натуральных чисел \(i_t\), \(j_t\) (1 ≤ \(i_t\) < \(j_t\) ≤ \(N\)) - номера сдвигаемых игрушек в очередном варианте.

Формат выходного файла

Выведите \(Q\) строк: для каждого варианта выбора пары одно вещественное число - необходимую ширину коробки. Ответ будет считаться правильным, если все числа посчитаны с абсолютной или относительной погрешностью не более \(10^{-9}\).

Комментарий

Верхний рисунок иллюстрирует исходное размещение игрушек в коробках, а нижние — варианты итогового расположения игрушек (оптимальный вариант слева).

Система оценивания

Тесты к этой задаче состоят из четырех групп.

0. Тест 1. Тест из условия, оценивается в ноль баллов.

1. Тесты 2–20. В тестах этой группы \(k_m\) ≤ 100, \(Q\) ≤ 1 000, \(S\) ≤ 10 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы.

2. Тесты 21–40. В тестах этой группы \(k_m\) ≤ 300, \(Q\) ≤ 50 000, \(S\) ≤ 100 000. Эта группа оценивается в 25 баллов. Баллы начисляются только при прохождении всех тестов группы. Решение будет тестироваться на тестах этой группы только в случае про- хождения всех тестов из первой группы.

3. Тесты 41–65. В тестах этой группы дополнительные ограничения отсутствуют. Эта группа оценивается в 50 баллов. Решение будет тестироваться на тестах этой группы только в случае прохождения всех тестов из первой и второй групп. Тесты в этой группе оцениваются независимо.

Примеры
Входные данные
2
5
0 0
4 2
6 6
3 8
-2 4
5
0 0
2 0
8 4
5 11
3 12
1
1 2
Выходные данные
14.5000000000
Входные данные
2
3
0 0
0 3
-1 1
3
0 0
1 0
-20 20
1
1 2
Выходные данные
21.0000000000
ограничение по времени на тест
2.0 second;
ограничение по памяти на тест
64 megabytes

Кроме Земли, пандорианцы уже много тысячелетий исследуют и другие планеты. Большой интерес для них в прошлом представляла планета Арракис. К сожалению, с началом исследований на Земле финансирование исследований на Арракисе было существенно урезано, и местным агентам-исследователям пришлось искать дополнительные источники дохода.

К счастью, пандорианцы очень хорошо разбираются в финансовых вопросах. Им не составило труда проанализировать политические, экономические и психологические тенденции, а также некоторые другие факторы, не имеющих названий на земных языках и на основе этих данных точно предсказать изменение стоимости воды на Арракисе на ближайший год. Как известно, вода на этой планете является главной ценностью после золота, на которое эту воду можно купить.

Изначально пандорианцы обладают запасом золота в 10 золотых слитков. Они решили в один из дней года купить на все это золото воды, а в какой-то последующий день продать всю купленную воду и получить прибыль за счет разницы стоимости. К примеру, если бы стоимость воды в день покупки составляла 1 литр за 4 золотых слитка, а стоимость воды в день продажи – 1 литр за 6 золотых слитков, то пандорианцы могли бы получить купить \(\frac{10}{4}=2.5\) литра воды, а продать они эту воду смогут за \(2.5 \times 6=15\) золотых слитков. Таким образом, прибыль пандорианцев составила бы \(15-10=5\) золотых слитков. Конечно же, пандорианцы хотят максимизировать свой доход в результате этих махинаций. Помогите им выбрать оптимальные дни для покупки и продажи воды!

Входные данные

В первой строке задано целое число 2 ≤ N ≤ 100 000 — количество дней в году на планете Арракис.

Во второй строке заданы N целых положительных чисел a i ( 1 ≤ i N , 1 ≤ a i ≤ 5000 ), задающих стоимость воды на Арракисе в день i .

Выходные данные

Выведите два целых числа: первое число — номер дня, в который стоит купить воду, второе число — номер дня, в который следует воду продать. Дни нумеруются с единицы. Если оптимальных пар дней для покупки/продажи несколько, то выведите любую из них.

Выведите два нуля, если покупка и продажа воды по указанной схеме не принесет пандорианцам прибыли.

Примеры
Входные данные
6
10 3 5 3 11 9
Выходные данные
2 5
Входные данные
4
5 5 5 5
Выходные данные
0 0
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
64 megabytes

Фермер Николай нанял двух лесорубов: Дмитрия и Федора, чтобы вырубить лес, на месте которого должно быть кукурузное поле. В лесу растут \(X\) деревьев.

Дмитрий срубает по A деревьев в день, но каждый \(K\)-й день он отдыхает и не срубает ни одного дерева. Таким образом, Дмитрий отдыхает в \(K\)-й, 2\(K\)-й, 3\(K\)-й день, и т.д.

Федор срубает по B деревьев в день, но каждый \(M\)-й день он отдыхает и не срубает ни одного дерева. Таким образом, Федор отдыхает в \(M\)-й, 2\(M\)-й, 3\(M\)-й день, и т.д.

Лесорубы работают параллельно и, таким образом, в дни, когда никто из них не отдыхает, они срубают \(A\) + \(B\) деревьев, в дни, когда отдыхает только Федор — \(A\) деревьев, а в дни, когда отдыхает только Дмитрий — \(B\) деревьев. В дни, когда оба лесоруба отдыхают, ни одно дерево не срубается.

Фермер Николай хочет понять, за сколько дней лесорубы срубят все деревья, и он сможет засеять кукурузное поле.

Требуется написать программу, которая по заданным целым числам \(A\), \(K\), \(B\), \(M\) и \(X\) определяет, за сколько дней все деревья в лесу будут вырублены.

Входные данные

Входной файл содержит пять целых чисел, разделенных пробелами: \(A\), \(K\), \(B\), \(M\) и \(X\) (1 ≤ \(A\), \(B\) ≤ \(10^9\) , 2 ≤ \(K\), \(M\) ≤ 1018, 1 ≤ \(X\) ≤ 1018).

Выходные данные

Выходной файл должен содержать одно целое число — искомое количество дней.

Пояснения к примеру

В приведенном примере лесорубы вырубают 25 деревьев за 7 дней следующим образом:
* 1-й день: Дмитрий срубает 2 дерева, Федор срубает 3 дерева, итого 5 деревьев;
* 2-й день: Дмитрий срубает 2 дерева, Федор срубает 3 дерева, итого 10 деревьев;
* 3-й день: Дмитрий срубает 2 дерева, Федор отдыхает, итого 12 деревьев;
* 4-й день: Дмитрий отдыхает, Федор срубает 3 дерева, итого 15 деревьев;
* 5-й день: Дмитрий срубает 2 дерева, Федор срубает 3 дерева, итого 20 деревьев;
* 6-й день: Дмитрий срубает 2 дерева, Федор отдыхает, итого 22 дерева;
* 7-й день: Дмитрий срубает 2 дерева, Федор срубает оставшееся 1 дерево, итого все 25 деревьев срублены.
Внимание! Тест из примера не подходит под ограничения для подзадач 2 и 3, но решение принимается на проверку только в том случае, если оно выводит правильный ответ на тесте из примера. Решение должно выводить правильный ответ на тест даже, если оно рассчитано на решение только каких-либо из подзадач 2 и 3

Система оценки и описание подзадач

Подзадача 1 (32 балла)
1 ≤ \(X\) ≤ 1000, 1 ≤ \(A\), \(B\) ≤ 1000, 2 ≤ \(K\), \(M\) ≤ 1000
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
Подзадача 2 (10 баллов)
1 ≤ \(X\) ≤ 1018
\(X\) < \(K\)
\(X\) < \(M\)
При решении этой подзадачи можно считать, что лесорубы не отдыхают.
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
Подзадача 3 (10 баллов)
1 ≤ \(X\) ≤ 1018
Дополнительно к приведенным ограничениям выполняется условие \(K\) = \(M\).
Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.
Подзадача 4 (48 баллов)
1 ≤ \(X\) ≤ 1018, 1 ≤ \(A\), \(B\) ≤ \(10^9\), 2 ≤ \(K\), \(M\) ≤ 1018
В этой подзадаче 16 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.

Примеры
Входные данные
2 4 3 3 25
Выходные данные
7
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Петя участвует в конкурсе, в котором разыгрывается \(n\) призов. Призы пронумерованы от 1 до \(n\).

По итогам конкурса участник может набрать от 2 до \(n\) баллов. Если участник наберет \(k\) баллов, то он получит один из призов с номером от 1 до \(k\). Перед тем, как участник выберет свой приз, ведущий конкурса удаляет один из призов из списка. Затем участник может выбрать любой приз из оставшихся \(k\) – 1.

Список призов стал известен Пете. Петя определил для каждого приза его ценность, для \(i\)-го приза она задается целым числом \(a_i\) .

Требуется написать программу, которая по заданным ценностям призов определяет для каждого \(k\) от 2 до \(n\), приз с какой максимальной ценностью гарантированно достанется Пете, если он наберет в конкурсе \(k\) баллов.

Входные данные

Первая строка входного файла содержит число \(n\) (\(2 \le n \le 100 000\)). Вторая строка этого файла содержит n целых чисел: \(a_1, a_2, …, a_n\) (\(1 \le a_i ≤ 10^9\) ).

Выходные данные

Выходной файл должен содержать одну строку, содержащую \(n\) – 1 целых чисел: для каждого \(k\) от 2 до \(n\) должна быть выведена ценность приза, который достанется Пете, если он наберет \(k\) баллов.

Описание подзадач и системы оценивания

Баллы за каждую подзадачу начисляются только в случае, если все тесты этой подзадачи успешно пройдены.

Подзадача 1 (24 балла)

\(n \le 100\)

Подзадача 2 (24 балла)

\(n \le 5000\)

Подзадача 3 (52 балла)

\(n \le 100000\)

Примеры
Входные данные
5
1 3 4 2 5
Выходные данные
1 3 3 4 
ограничение по времени на тест
1.0 second;
ограничение по памяти на тест
256 megabytes

Для освоения Марса требуется построить исследовательскую базу. База должна состоять из \(n\) одинаковых модулей, каждый из которых представляет собой прямоугольник.

Каждый модуль представляет собой жилой отсек, который имеет форму прямоугольника размером \(a \times b\) метров. Для повышения надежности модулей инженеры могут добавить вокруг каждого модуля слой дополнительной защиты. Толщина этого слоя должна составлять целое число метров, и все модули должны иметь одинаковую толщину дополнительной защиты. Модуль с защитой, толщина которой равна \(d\) метрам, будет иметь форму прямоугольника размером \((a + 2d) \times (b + 2d)\) метров.

Все модули должны быть расположены на заранее подготовленном прямоугольном поле размером \(w \times h\) метров. При этом они должны быть организованы в виде регулярной сетки: их стороны должны быть параллельны сторонам поля, и модули должны быть ориентированы одинаково.

Требуется написать программу, которая по заданным количеству и размеру модулей, а также размеру поля для их размещения, определяет максимальную толщину слоя дополнительной защиты, который можно добавить к каждому модулю.

Входные данные

Строка содержит пять разделенных пробелами целых чисел: \(n\), \(a\), \(b\), \(w\) и \(h\) (\(1 \le n, a, b, w, h \le 10^{18}\)). Гарантируется, что без дополнительной защиты все модули можно разместить в поселении описанным образом.

Выходные данные

Ответ должен содержать одно целое число: максимальную возможную толщину дополнительной защиты. Если дополнительную защиту установить не удастся, требуется вывести число 0.

Пояснения к примерам

В первом примере можно установить дополнительную защиту толщиной 2 метра и разместить модули на поле, как показано на рисунке.

Во втором примере жилой отсек имеет размер \(5 \times 5\) метров, а поле – размер \(6 \times 6\) метров. Добавить дополнительную защиту к модулю нельзя.

Описание подзадач и системы оценивания

Подзадача 1 (26 баллов)

\(1 \le n \le 1000, 1 \le a, b, w, h \le 1000\).

Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены

Подзадача 2 (23 балла)

\(1 \le n \le 1000, 1 \le a, b, w, h \le 10^9\).

Баллы за подзадачу начисляются только в случае, если все тесты успешно пройдены.

Подзадача 3 (до 24 баллов)

\(1 \le n \le 10^9 , 1 \le a, b, w, h \le 10^{18}\).

В этой подзадаче 8 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.

Подзадача 4 (до 27 баллов)

\(1 \le n \le 10^{18} , 1 \le a, b, w, h \le 10^{18}\).

В этой подзадаче 9 тестов, каждый тест оценивается в 3 балла. Баллы за каждый тест начисляются независимо.

Примеры
Входные данные
11 2 3 21 25
Выходные данные
2
Входные данные
1 5 5 6 6
Выходные данные
0

Страница: << 3 4 5 6 7 8 9 >> Отображать по:
Выбрано
:
Отменить
|
Добавить в контест