Турнир Архимеда(52 задач)
Кировские командные турниры(8 задач)
Барнаульские командные турниры(10 задач)
Московская командная олимпиада(246 задач)
Командные чемпионаты школьников Санкт-Петербурга по программированию(167 задач)
ВКОШП(180 задач)
Требуется сравнить два 100-значных числа.
На вход программы поступают два 100-значных натуральных числа \(A\) и \(B\). Каждое число вводится на отдельной строке.
Если \(A\)>\(B\), то выведите “>” (один символ без кавычек).
Если \(A\)<\(B\), то выдайте “<”.
Если \(A\)=\(B\), выдайте “=”.
В примерах числа 111…1 и 222…2 состоят из 100 знаков.
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 2222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222
<
Сколько понадобится парт, чтобы рассадить \(A\) школьников, если за одну парту можно посадить одного или двух человек? За каждой партой должен сидеть хотя бы один человек. Укажите все варианты.
Вводится одно натуральное число — \(A\) ( 1 ≤ \(A\) ≤ 10000)
Выведите упорядоченный по возрастанию набор чисел – все возможные значения количества необходимых парт.
6
3 4 5 6
Сколько существует клеток на доске размером \(K\)x\(K\) таких, что шахматный конь, стоящий на этой клетке, бьет ровно \(N\) полей?
Вводятся натуральные числа \(K\) и \(N\) (1 ≤ \(K\) ≤ 100, 2 ≤ \(N\) ≤ 8).
Выведите количество клеток, с которых конь бьет ровно \(N\) полей.
на доске 8x8 конь бьет ровно два поля только с угловых клеток, их 4.
8 2
4
Двое играют в следующую игру. Из кучки спичек за один ход игрок вытягивает либо 1, либо 2, либо 1000 спичек. Выигрывает тот, кто забирает последнюю спичку. Кто выигрывает при правильной игре?
Вводится одно натуральное число — \(N\) ( 1≤ \(N\) ≤ 10000) начальное количество спичек в кучке.
Выведите 1, если выигрывает первый игрок (тот, кто ходит первым), или 2, если выигрывает второй игрок.
2
1
3
2
Сережа - большой любитель игр на сотовом телефоне. Недавно он скачал из интернета новую игру "Пузырьки 1D". Опишем правила игры.
Исходная позиция в игре представляет собой \(N\) пузырьков, расположенных вертикально в ряд. Каждый пузырек окрашен в один из четырех цветов - красный, зеленый, синий или желтый. Назовем группой несколько следующих подряд пузырьков одинакового цвета, непосредственно сверху и снизу от которых находятся либо пузырьки другого цвета, либо границы ряда пузырьков.
За один ход разрешается выбрать любую группу, состоящую хотя бы из двух пузырьков, и взорвать ее. За взрыв группы, содержащей K пузырьков, игрок получает K2 очков. После взрыва группы пузырьки, которые находились сверху, опускаются вниз.
Например, ниже на рисунке показана позиция, содержащая 10 пузырьков. В ней четыре группы, содержащие 3, 2, 4 и 1 пузырек, соответственно. Если взорвать группу, содержащую четыре пузырька, то игрок получит 16 очков, и верхние 5 пузырьков опустятся вниз. В получившейся позиции 6 пузырьков, и две группы по 3 пузырька в каждой.
На вход программы поступает одна строка, состоящая из букв "R", "G", "B и "Y", описывающая начальную позицию. Буквы задают цвета пузырьков в порядке просмотра сверху вниз ("R" означает красный пузырек, "G" – зеленый, "B" – синий, а "Y" – желтый). В заданной позиции не менее двух и не более 100 пузырьков.
Выведите одно число – максимальное количество очков, которое сможет заработать Сережа. Если уничтожить все пузырьки невозможно, выведите 0.
В первом примере следует действовать следующим образом: сначала надо взорвать группу из четырех красных пузырьков, получив 16 очков. Затем надо взорвать в любом порядке получившиеся две группы по 3 пузырька, получив по 9 очков за каждую.
RRRGGRRRRG
34
RB
0